Question

Problem Use the following information to answer questions 22-23. The cutting force and thrust force in an orthogonal cutting


Problem D In an orthogonal cutting test, the cutting force is 900 N, the thrust force is 600 N, and the chip shear plar angle
0 0
Add a comment Improve this question Transcribed image text
Answer #1

Solution 3 Given fc = 2400 M (Catting force) F = 2589H (throof force) Ralee angle de 50 width of auf b = 5.0mm uncet chip thico by If Fra goom, fr=goon d=300 Chip sheer force fs= fcceso frosina fs= good (6 30 - 600.sin 36 fs = 729.422 - 300 fs=479.42

Add a comment
Know the answer?
Add Answer to:
Problem Use the following information to answer questions 22-23. The cutting force and thrust force in...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • 1. The cutting conditions in a turning operation are v=2m/s f=. 25 mm. and d 3.0...

    1. The cutting conditions in a turning operation are v=2m/s f=. 25 mm. and d 3.0 mm. The tool rake angle 10 degrees, which produces a deformed chip thickness t c = 0.54 mm. Determine (a) shear plane angle, (b) shear strain. and (c) material removal rate. Use the orthogonal cutting model as an approximation of the turning process. 3. The cutting force and thrust force have been measured in an orthogonal cutting operation: Fc = 300 lb and Fc...

  • Kindly provide with clear step by step solution An orthogonal cutting operation is being carried out...

    Kindly provide with clear step by step solution An orthogonal cutting operation is being carried out under the following conditions: depth of cut-0.10 mm, width of cut 5 mm, chip thickness-0.2 mm, cutting speed = 2 m/s, rake angle = 15°, cutting force-500 N, and thrust force-200 N. Calculate the percentage of the total energy that is dissipated in the shear plane during cutting.

  • In an orthogonal metal cutting test in a turning operation, the following conditions were recorded cutting...

    In an orthogonal metal cutting test in a turning operation, the following conditions were recorded cutting speed = 160 m/min, feed = 0.28 mm/rev, width of cut-2.4 mm, rake angle-70. After the cut, the deformed chip thickness 0.45 mm, cutting force-950 N and thrust 400 N. Determine (a) shear plane angle, (b) The friction angle, (c) The specific energy of workpiece material, (d) The shear stress on shear plane (e) The friction force (f) The shear strain during the deformation...

  • Manufacturing Q10 - The shear strength of a certain work material 50,000 lb'in". An orthogonal cutting...

    Manufacturing Q10 - The shear strength of a certain work material 50,000 lb'in". An orthogonal cutting operation is perfommed using a tool with a rake angle = 20° at the following cutting conditions: cutting speed = 100 ft/min, chip thickness before the cut = 0.015 in, and width of cut = 0.150 in. The resulting chip thickness ratio = 0.50. Determine (a) the shear plane angle; (b) shear force; (c) cutting force and thrust force, and (d) friction force. wers:...

  • Manufacturing of Engineering 21.1. In an orthogonal cutting operation, the tool has a rake angle=15°.The chip...

    Manufacturing of Engineering 21.1. In an orthogonal cutting operation, the tool has a rake angle=15°.The chip thickness before the cut          = 0.30 mm and the cut yields a deformed chip thickness = 0.65 mm. Calculate (a) the shear plane angle and (b) the shear strain for the operation. 21.2 In Problem 21.1, suppose the rake angle were changed to a α= 0°. Assuming that the friction angle remains the same, determine (a) the shear plane angle, (b) the chip thickness,...

  • Chapter 15: 1. Shear plane angle and shear strain: In an orthogonal cutting operation, the tool...

    Chapter 15: 1. Shear plane angle and shear strain: In an orthogonal cutting operation, the tool has a rake angle = 16°. The chip thickness before the cut = 0.32 mm and the cut yields a deformed chip thickness = 0.72 mm. Calculate (a) the shear plane angle and (b) the shear strain for the operation. 2. Shear strength: The cutting force and thrust force have been measured in an orthogonal cutting operation to be 301 lb and 291 lb,...

  • In a turning operation, cutting speed = 1.8 m/s, feed = 0.30 mm/rev, and depth of...

    In a turning operation, cutting speed = 1.8 m/s, feed = 0.30 mm/rev, and depth of cut = 2.6 mm. Rake angle = 8°. After the cut, the deformed chip thickness = 0.56 mm and before the cut, the chip thickness = 0.26 mm. Determine (a) shear plane angle, (b) shear strain, and (c) material removal rate. Use the orthogonal cutting model as an approximation of turning

  • QUESTION 5 During the orthogonal cutting of medium carbon steel rod with diameter of 75 mm...

    QUESTION 5 During the orthogonal cutting of medium carbon steel rod with diameter of 75 mm and yield strength of 240 N/mm², the following machining data were used: Rake angle = 12°C Spindle speed = 950 rev/min Chip thickness ratio = 0.25 mm Depth of cut = 0.8 mm Width of cut = 5.0 mm Horizontal component of the cutting force = 1000 N The vertical component of the cutting force = 1400 N Calculate the following: (a) Shear plane...

  • Question1 A sheet of aluminum alloy that has an ultimate tensile strength of 125 MPa is...

    Question1 A sheet of aluminum alloy that has an ultimate tensile strength of 125 MPa is to be punched. The punch will perform the action of material removal on a 120. mm*2 squared cross sectional area. The punch force is estimated to be 1.35E+04 N. Determine the thickness of the aluminum sheet in mm. Question2 If the bend allowance of a 3.00 mm thick sheet is 18.2 mm. Determine the bending radius in mm if the bending angle is 0.600....

  • Application to manufacturing/ Machining temperature : Estimate the average temperature along the ...

    Application to manufacturing/ Machining temperature : Estimate the average temperature along the shear plane and the maximum temperature along the tool rake face for the following conditions during the orthogonal cutting of Ti6Al4V, as function of machining velocity from 1 m/s to 4 m/s: Tool rake angle: - 5 degree . Cutting ratio: 0.3 Cutting force (Fc): 225 N Thrust Force (Ft): 75 N Machining velocity: 1 m/s to 4 m/s Feed: 0.1 mm/rev Width of cut: 1.07 mm Length...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT