Question

Image for A car goes around a curve on a road that is banked at an angle of 33.5 degree. Even though the road is slick,

0 0
Add a comment Improve this question Transcribed image text
Answer #1

if theta is the angle of banking,

tan(theta) = v^2/(g*r)

here, v is speed

g is acceleration due to gravity

and r is radius of curve.

so,

r = v^2/(g*tan(theta))

= 23^2/(9.8*tan(33.5))

= 81.6 m

Add a comment
Know the answer?
Add Answer to:
A car goes around a curve on a road that is banked at an angle of...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • 4. A car is moving along a banked slick curve. The designated speed for the curve...

    4. A car is moving along a banked slick curve. The designated speed for the curve is 13.4 m/sec and the radius of the curve is 35.0 m. At what angle should the curve be banked? 5. A 540 kg car is merging onto the interstate on a banked curve. The curve is banked 7.1° from the horizontal and is rated at 35 mph. The car takes the turn at 52 mph (23 m/s). What sideways frictional force is required...

  • A car rounds a curve that is banked inward. The radius of curvature of the road...

    A car rounds a curve that is banked inward. The radius of curvature of the road is R = 140 m, the banking angle is θ = 26°, and the coefficient of static friction is μs = 0.39. Find the minimum speed that the car can have without slipping. A car rounds a curve that is banked inward. The radius of curvature of the road is R 140 m, the banking angle is 26e, and the coefficient of static minimum...

  • A car goes around an icy banked curve (frictionless) at a speed that is not too...

    A car goes around an icy banked curve (frictionless) at a speed that is not too fast so that the car stays on the circula path. What causes the car to follow the circular path? A car goes around an icy banked curve (frictionless) at a speed that is not too fast so that the car stays on the circula path. What causes the car to follow the circular path? the normal force from the road gravity the friction force...

  • PLEASE ANSWER PART B. THANKS! t Banked Frictionless Curve, and Flat Curve with Friction A car...

    PLEASE ANSWER PART B. THANKS! t Banked Frictionless Curve, and Flat Curve with Friction A car of mass M 1500 kg traveling at 45.0 km/hour enters a banked turn covered with ice. The road is banked at an angle 6, and there is no friction between the road and the car's tires as shown in (Figure 1). Use g 9.80 m/s2 throughout this problem. of 2 Figure 1 Part A What is the radius r of the turn if 0...

  • Consider the motion of a car around a banked curve. The angle of the bank with...

    Consider the motion of a car around a banked curve. The angle of the bank with respect to the horizontal is 15.0 degrees, the speed of the car is 20.0 m/s, the radius of curvature for the curve is 30.0 m, and the coefficient of static friction is 0.500. The mass of the car is 1000 kg. a) What is the frictional force? b) Is there a speed at which the frictional force would be zero? If so, what is...

  • A highway curve of radius 68.0 m is banked at 21.4 degree so that a car...

    A highway curve of radius 68.0 m is banked at 21.4 degree so that a car traveling at 26.4 m/s (95 km/hr) will utilize both banking and friction to keep it on the curve. Determine the minimum coefficient of static friction between the tires and the road to keep the car on the road at this speed on this curve.

  • A car rounds a curve that is banked inward. The radius of curvature of the road...

    A car rounds a curve that is banked inward. The radius of curvature of the road is R = 152 m, the banking angle is θ = 32°, and the coefficient of static friction is μs = 0.23. Find the minimum speed that the car can have without slipping.

  • Banked Frictionless Curve, and Flat Curve with Friction Reviev A car of mass M - 1300...

    Banked Frictionless Curve, and Flat Curve with Friction Reviev A car of mass M - 1300 kg traveling at 60.0 km/hour enfers a banked turn covered with ice. The road is banked at an angle and there is no friction between the road and the car's tires as shown in Figure 1). Use 9 - 9.B0 m/s throughout this problem. Part A What is the radius of the turn it 8 - 20.0 (assuming the car continues in uniform circular...

  • A car rounds a curve that is banked inward. The radius of curvature of the road...

    A car rounds a curve that is banked inward. The radius of curvature of the road is R = 142 m, the banking angle is θ = 30°, and the coefficient of static friction is μs = 0.32. Find the minimum speed that the car can have without slipping. I got 36.5196 m/s, which isn't correct.

  • A curve with a 130 m radius on a level road is banked at the correct...

    A curve with a 130 m radius on a level road is banked at the correct angle for a speed of 20 m/s. If an automobile rounds this curve at 30 m/s, what is the minimum coefficient of static friction between tires and road needed to prevent skidding?

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT