Question

1) Water flows steadily through the system shown below: Supply provides Q (for which you must solve) to keep H steady. (1) --

Total pipe length (including the vertical and horizontal sections) is L = 16 m.
Pipe diameter D = 8 cm, pipe cross‐sectional area Apipe = 2 x 10‐4 m2, pipe roughness e = 0.08 mm.

There is a streamline from location (1) to location (2) with an elevation change of H = 12 m. Reservoir surface area Asurf = 12 m2.

Calculate the flowrate Q in the system using the recursive method (guess f and check).

0 0
Add a comment Improve this question Transcribed image text
Answer #1

-2000g + 544] Re: 58103. 108 ElD=106_102 Dagom [eloz 1x103) E = 0.08 mm Re~ 5X10 and neglecting the minor losses assuming the& Applying beindulis equation blonso P + 1 +- 2 - 1 3 1 + 22 the his filio cuoglecting mouor losses. P= P2= Palm op Qcccvz 2=from ecuation ③ 92 - On 0204 X16X 627 12 = 2x9.81 2x9.81X8X102 V = 6.808mle Res 6 6.808 x (900 8.90 Xco7 Re = 611955.0562 equ

Add a comment
Know the answer?
Add Answer to:
Total pipe length (including the vertical and horizontal sections) is L = 16 m. Pipe diameter...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Q3 (40 pts): Water is pumped through a 60-m-long, 0.3-m-diameter pipe from a lower reservoir to...

    Q3 (40 pts): Water is pumped through a 60-m-long, 0.3-m-diameter pipe from a lower reservoir to a higher reservoir, which has a water surface 10 m above the lower one. When the pump adds 40 kW to the water the flowrate is 0.20 m/s. Assume the following coefficients of minor losses: • Entrance: Kentrance = 0.5 Exit: Kexit = 1 Each elbow: Kelbow = 1.5 • Valve: K= 6 Part A (20 pts) Determine the pipe roughness ε. Part B...

  • H2.3 Consider water at 20°C flowing through a horizontal pipe of diameter 15 cm and length 10 m. ...

    H2.3 Consider water at 20°C flowing through a horizontal pipe of diameter 15 cm and length 10 m. The flowrate is 0.021 m3/s and the wall shear stress is 5.76 N/m2. Assume fully developed flow. a. Verify that the flow is turbulent b. Determine the pressure drop [N/m2 c. Estimate the viscous sublayer thickness [mm], i.e., where y+ 5 d. Compare results of part c. with typical pipe roughness (see Table 8.1 in text and comment on implication e. Using...

  • Question 6 - Minor Losses A tank and piping system is shown. The galvanized pipe diameter is 1.5 cm, and the total length of pipe is 10 m. The two 90° elbows are threaded fittings. The vertical dista...

    Question 6 - Minor Losses A tank and piping system is shown. The galvanized pipe diameter is 1.5 cm, and the total length of pipe is 10 m. The two 90° elbows are threaded fittings. The vertical distance from the water surface to the pipe outlet is 5 m. The velocity of the water in the tank is negligible. Find (a) the exit velocity of the water and (b) the height (h) the water jet would rise on exiting the...

  • Question in the picture smooth pipe: Total length, L Diameter, d -25 mm 4 m tank...

    Question in the picture smooth pipe: Total length, L Diameter, d -25 mm 4 m tank water (pa 1,000 kg/m3, μ 0.001 kg/ms) flows from a very large tank (that is open to atmosphere) through an L 4 m total length of smooth pipe of d = 25 mm diameter at a bulk velocity of 6 m/s. The water then exits the pipe at 3 m above ground as a free jet. The pipe network contains a gate valve (V),...

  • The following figure depicts a pipe system connecting two reservoirs. No minor losses should be considered...

    The following figure depicts a pipe system connecting two reservoirs. No minor losses should be considered in this problem. Assume that y=62.4 lb/ft. The water surface elevation at Reservoir A is 24 feet, and at Reservoir Dthe water surface elevation is 100 feet. The pump supplies a head of He=100 feet. The pipe system consists of pipes in series with the following characteristics: Pipe ABBCCD Diameter (in) 18 18 Length (ft) 4,000 1,000 2,000 Darcyf 0.015 0.020 0.015 la) Calculate...

  • 7.8 A horizontal pipeline consists of a 38 mm diameter pipe, 6 m long in total. The pipe has 2 bends, each with a l...

    7.8 A horizontal pipeline consists of a 38 mm diameter pipe, 6 m long in total. The pipe has 2 bends, each with a loss coefficient k 2,2, as well as a filter and a valve with length to diameter ratio of 120 and 65 respectively. Water flows at a rate of 5 L/s through the system. Take the friction factor as f 0,002 and determine (a) The equivalent length of each bend, the filter and the valve. (10,45 m,...

  • 8-C) As shown below water is pumped and sprayed through a nozzle into the atmosphere at 20 m/s at...

    8-C) As shown below water is pumped and sprayed through a nozzle into the atmosphere at 20 m/s at an elevation 10 m above the reservoir surface. The mass flow rate is 40 kg/s and the volumetric flow rate is 0.040 m3/s. The large diameter inlet pipe total length is 50 m. The pump effidency is 65%. The longer smaller diameter pipe leaving the pump is 200 m in total length. The pipes have different diameters as indicated below. The...

  • L 2. Steady statemass balance: Water is flowing at steady state in a 0.1 meter-diameter pipe...

    L 2. Steady statemass balance: Water is flowing at steady state in a 0.1 meter-diameter pipe with a maximum velocity (turbulent profile) of 0.3 meters/sec. The pipe then goes through an expansion, to where it is then flowing in a 0.5 meter-diameter pipe, and the flow regime has changed from turbulent to laminar. In the second section of pipe, calculate the velocity as (a) block flow profile (Vavg), and (b) maximum velocity in laminar flow profile? HINT: you will need...

  • EDIT: The fluid in the system is water. There is no data regarding the inclination of...

    EDIT: The fluid in the system is water. There is no data regarding the inclination of the pipe. It's known that the equipment used includes a fluid flow piping system (AFT), hydraulic bench (FME00), barometer, and psychrometer. Also added an appendix that has recommended equations. Need help on a fluid mechanics friction problem Given: Pipe Diameter=23mm Length=1000mm Temperature = 70 Celsius Flow rate = 1400 L/hr Water column LP1= 330mm Water column LP2=90mm Find: Flow rate m^3/s, Velocity m/s, Temp...

  • Objective To determine the force generated by a jet of water striking on a surface Description...

    Objective To determine the force generated by a jet of water striking on a surface Description of apparatus The supply is led to a vertical pipe terminating in a tapered nozzle. This produces a jet of water which impinges on the vane in the form of a Flat Plate, Hemispherical Cup, Conical Plate or 30° Angled Plate. The nozzle and vane are contained within a transparent cylinder; at the base of the cylinder there is an outlet by which the...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT