Question

Two , slides without friction on an inclined plane that makes an angle of ?-370 with the horizontal. The mass of the larger object is given as M-2.2 kg and it hangs on the string If the two objects are released from rest with the string taut, what is their total kinetic energy (in ]) when the object of mass M has fallen 27 cm? Objects are connected by a massless string, as shown in the figure below. The pulley is massless and rotates without friction. The object of smaller mass, m = 1.4 kg

0 0
Add a comment Improve this question Transcribed image text
Answer #1

2 C- ke 2 Ice,- 2.21ㄒㄧ--, Mg-ma M9 (m tm) 3.7 mis2 V/ 2 V-f 5

Add a comment
Know the answer?
Add Answer to:
Two , slides without friction on an inclined plane that makes an angle of ?-370 with...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • 1. A block of mass m moves without friction on a horizontal plane. The body is...

    1. A block of mass m moves without friction on a horizontal plane. The body is connected to a massless string which slides without friction over a fixed pulley. A massless pulley is fastened at the other end of the string. Over the pulley, which can rotate without friction, hangs another string which has two bodies of masses 3m and m fastened to its two ends respectively. Their motions are supposed to be strictly vertical. The acceleration of gravity is...

  • Two blocks with mass M1 and M2 are arranged as shown with M sitting on an inclined plane

    Two blocks with mass M1 and M2 are arranged as shown with M sitting on an inclined plane and connected with a massless unstretchable string running over a massless, frictionless pulley to M2, which is hanging over the ground. The two masses are released initially from rest. The inclined plane has coefficients of static and kinetic friction μs and μk respectively where the angle θ is small enough that mass M1 , would remain at rest due to static friction if...

  • 6. (20 points) A block of mass M-10.0 kg slides down a rough inclined plane with...

    6. (20 points) A block of mass M-10.0 kg slides down a rough inclined plane with an acceleration 0.300 m/s. The plane makes an angle theta-30.0 with th block is connected by a string, of negligible mass, that is wrapped around a pulley pulley has a mass Mp-3.00 kg, radius 0.0200 m and may be modeled as a uniform disc e horizontal. The oefficient of kinetic friction on the incline and the torque exerted on the pulley. A numerical value...

  • Two masses are connected by a massless rope. The mass of object 1 is 5.5 kg,...

    Two masses are connected by a massless rope. The mass of object 1 is 5.5 kg, and it rests on a surface with a 1.7 coefficient for static friction (us) and a .90 coefficient for kinetic friction (uk). Object 2 has a mass of 8.3 kg and hangs over the edge of the surface by a frictionless, massless pulley. The two objects begin at rest when object 2 is released to hang freely. A.) Draw a free body diagram for...

  • Q2)) A block of mass m= 4 kg slides down a frictionless plane inclined 30° to...

    Q2)) A block of mass m= 4 kg slides down a frictionless plane inclined 30° to the horizontal . The block is connected to other block ( moving vertically) of mass m2= 1kg by massless string through a rough pulley (with moment of ineria I= 12 mR", m= 2kg and R=0.5 m) as shown in the fig. a) Find the acceleration of the blocks. b) Find the acceleration of the pulley. c) Find the tension in the string . 30

  • Rope connected two objects in the inclined plane, A block of mass m1 = 22.9 kg...

    Rope connected two objects in the inclined plane, A block of mass m1 = 22.9 kg is at rest on a plane inclined at Theta = 35.0 degree above the horizontal. The block is connected via a rope and mass less pulley system to another block of mass m2 = 26.1 kg. as shown in the figure. The coefficients of static and kinetic friction between block 1 and the inclined plane Is MU_s is unknown. If the blocks are released...

  • The figure below shows an object of mass m1 = 1.0 kg on an inclined surface....

    The figure below shows an object of mass m1 = 1.0 kg on an inclined surface. The angle of the inclined surface is θ = 30° with the horizontal. The object m1 is connected to a second object of mass m2 = 2.5 kg on a horizontal surface below an overhang that is formed by the inclined surface. Further, an external force of magnitude Fext = 10 N is exerted on the object with mass m1. We observe both objects...

  • As shown in Figure 3(a), a wooden block B with mass mg 2.4 kg on a rough inclined plane is connected to a massless sp...

    As shown in Figure 3(a), a wooden block B with mass mg 2.4 kg on a rough inclined plane is connected to a massless spring (k 160 N/m) by a massless cord passing over a pulley P of radius R 0.25 m and mass M, 0.60 kg. The angle of the inclined plane is 0 37 and the coefficients of static and kinetic frictions are g 0.35 and A 0.30 respectively The frictional force at the axle of the pulley...

  • A mass (10 kg) slides up an inclined 10 degree surface at 5 m/s with coefficient...

    A mass (10 kg) slides up an inclined 10 degree surface at 5 m/s with coefficient of friction uk=0.5. It is connected by a cord over a pulley to a hanging 15 kg mass by a massless stretchfree cord. What is the acceleration of the mass on the incline? Direction of movement is up the incline and to the right.

  • A 4.5-kg block slides down an inclined plane that makes an angle of 28° with the...

    A 4.5-kg block slides down an inclined plane that makes an angle of 28° with the horizontal. Starting from rest, the block slides a distance of 2.4 m in 5.2 s. Find the coefficient of kinetic friction between the block and plane.

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT