Question

Ideal Brayton cycle with heat regeneration has a pressure ration rp-10.4, T1-300K. The effectiveness of the regenerator is 80%. The network output WmF350 kJ/kg and the thermal efficiency of the cycle is nth 54%. Assume that the air is an ideal gas with variable specific heats. al Draw The thermodynamic cycle Ts and Pv Calculate: b/ Turbine work (WT.out) c/ qin, apply the first law of thermodynamic to the system to calculate gout d/ qregen Heat Combustion chambet Turbine Compressor
0 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
Ideal Brayton cycle with heat regeneration has a pressure ration rp-10.4, T1-300K. The effectiveness of the...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A brayton cycle with regeneration and intercooling has a pressure ratio of 4 across each compressor...

    A brayton cycle with regeneration and intercooling has a pressure ratio of 4 across each compressor while the total pressure ratio across the turbine is 16. Air enters each compressor at 298K while the inlet gas temperature to the turbine is 1200K. If the regenerator effectiveness is 100%, calculate the cycle thermal efficiency from the heat addition and rejection. 3. A Brayton cycle with regeneration and intercolinig aeross the turbine is across each compressor while the total pressure ratio across...

  • An ideal Brayton cycle with regeneration is shown below. Note that from 1 to 6, there...

    An ideal Brayton cycle with regeneration is shown below. Note that from 1 to 6, there is a heat rejection process. The pressure ratio is 10 and the inlet to the compressor is at 300 K and 100 kPa. The maximum temperature is 1100 K. Use air as the working fluid, and assume constant properties evaluated at 300 K.   (a) Find the net work output and the cycle efficiency assuming the effectiveness of the regenerator is 100% (b) Plot the...

  • Thermodynamics 2: STARTING FROM QS 2) 1) In an ideal Brayton cycle air enters the compressor...

    Thermodynamics 2: STARTING FROM QS 2) 1) In an ideal Brayton cycle air enters the compressor at T = 300K and P = 1 bar with a volumetric flow rate = 20 m3/s. Air enters the turbine at P = 10 bar and T = 1800K. Find: a) The thermal efficiency b) The backwork ratio c) The net power generation in MW 2) For the same states above consider a cycle where the isentropic efficiency of the compressor and turbine...

  • An aircraft engine operates on a simple ideal Brayton cycle with a pressure ratio rp of...

    An aircraft engine operates on a simple ideal Brayton cycle with a pressure ratio rp of 9. Heat is added to the cycle at a rate of 490 kW; air passes through the engine at a rate of 1.1 kg/s; and the air at the beginning of the compression is at P1 = 71 kPa and T1 = 0 oC. Use constant specific heats at room temperature. The properties of air at room temperature are cp =1.005 kJ/kg.K and k...

  • Air enters the compressor of a cold air-standard Brayton cycle with regeneration at 100 kPa, 300...

    Air enters the compressor of a cold air-standard Brayton cycle with regeneration at 100 kPa, 300 K, with a volume flow rate of 5 m3/s. The compressor pressure ratio is 8, and the turbine inlet temperature is 1400 K. The turbine and compressor each have isentropic efficiencies of 80% and the regenerator effectiveness is 80%. For the air, k = 1.4 and the ambient temperature is T0 = 300 K. -Determine the thermal efficiency of the cycle. -determine the back...

  • Help Save & Exit Submit Required information A Brayton cycle with regeneration using air as the...

    Help Save & Exit Submit Required information A Brayton cycle with regeneration using air as the working fluid has minimum and maximum temperatures in the cycle are 310 and 1150 K. Assume an isentropic efficiency of 75 percent for the compressor and 82 percent for the turbine and an effectiveness of 68 percent for the regenerator. Use variable specific heats for air a pressure ratio of 7. The Determine the air temperature at the turbine exit. (You must provide an...

  • Problem4 (a) (40 points) A combined gas-steam powe cycles. The ideal Brayton and Rankine plant operates on Rankine cycle has a reheater. The Brayton cycle operates on a gas- of the gas-turbine c...

    Problem4 (a) (40 points) A combined gas-steam powe cycles. The ideal Brayton and Rankine plant operates on Rankine cycle has a reheater. The Brayton cycle operates on a gas- of the gas-turbine cycle 1400 K The 15MPa to ercooling, reheating, and regeneration cycle. The pressure ratio 300 K for compressor stages is do Air enters compressors a combustion gases leaving the lower pressure gas turbine are used to heat the steam at C in a heat exchanger. The combustion gases...

  • Consider a closed Brayton cycle heat-engine. Air is compressed from 300K, 100 kPa to 580K, 700...

    Consider a closed Brayton cycle heat-engine. Air is compressed from 300K, 100 kPa to 580K, 700 kPa. The air is heated at the rate of 950 kJ/kg before it enters the turbine. The isentropic efficiency of the turbine is 86%. Determine: a) the fraction of the turbine shaft power used to drive the compressor, and b) the thermal efficiency of the engine. Sketch the prooess on a T-s diagram. Do the calculation first with variable specific heats and then repeat...

  • Problem 9.106 using varaiable specific heat assumption (Non-Ideal Regenerative Brayton Cycle) 9-105 A gas turbine for...

    Problem 9.106 using varaiable specific heat assumption (Non-Ideal Regenerative Brayton Cycle) 9-105 A gas turbine for an automobile is designed with a regenerator. Air enters the compressor of this engine at 100 kPa and 30°C. The compressor pressure ratio is 8; the maximum cycle temperature is 800°C; and the cold airstream leaves the regenerator 10°C cooler than the hot airstream at the inlet of the regenerator. Assuming both the compressor and the tur- bine to be isentropic, determine the rates...

  • An air-standard Brayton cycle includes a regenerator which is shown in the below figure. The air...

    An air-standard Brayton cycle includes a regenerator which is shown in the below figure. The air enters the compressor at 100 kPa, 20℃. The pressure ratio across the compressor is 9:1. The highest temperature in the cycle is 1100℃, and the flow rate of the air is 10 kg/s. The regenerator operates at effectiveness 80 percent. Both the efficiencies of the turbine and the compressor are 85%. Do not use Table A-22. Assuming constant specific heat ( cp = 1.004...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT