Question

An ideal gas with Cv = 5/2R, and γ = 1.4 starts at a volume of...

An ideal gas with Cv = 5/2R, and γ = 1.4 starts at a volume of 2.0m^3, a pressure of 3.0 × 10^5Pa, and a temperature of 300K. The gas undergoes an isochoric cooling where its pressure decreases to 1.0 × 10^5Pa. It then undergoes an adiabatic contraction until its pressure returns to 3.0×10^5Pa. It finally undergoes an isobaric heating until it returns to a volume of 2.0m^3.

What is the efficiency of this heat engine?

0 0
Add a comment Improve this question Transcribed image text
Answer #1

23 2m 1-y XID W net v, 0.91 ml (3x105) (2-0.91 438 xI0 816 2

Add a comment
Know the answer?
Add Answer to:
An ideal gas with Cv = 5/2R, and γ = 1.4 starts at a volume of...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • 1.On a pV diagram, draw the path a gas takes as it goes through the following...

    1.On a pV diagram, draw the path a gas takes as it goes through the following processes: first it undergoes an isochoric heating process, then that’s followed by an isobaric cooling process, finally it goes back to its original position on the pV diagram by undergoing an isothermal expansion. 2. An ideal gas initially at volume V1, pressure P1, and temperature T1 undergoes an isobaric process that changes its temperature to T2. The gas immediately undergoes an isothermal process that...

  • An ideal gas with γ=1.4 occupies 5.0 L at 300 K and 100 kPa pressure and...

    An ideal gas with γ=1.4 occupies 5.0 L at 300 K and 100 kPa pressure and is heated at constant volume until its pressure has doubled. It's then compressed adiabatically until its volume is one-fourth its original value, then cooled at constant volume to 300 K , and finally allowed to expand isothermally to its original state. Find the net work done on the gas in Joules.

  • Rebelmatk Cycle bewo Veas 3) The Diesel... .I mean, Rebelmatic engine is used in vehicles across...

    Rebelmatk Cycle bewo Veas 3) The Diesel... .I mean, Rebelmatic engine is used in vehicles across the globe. A diatomic, ideal gas (γ 7/5) undergoes adiabatic compression from point 1 (Vii P), followed by isobaric expansion as the fuel is burned, then adiabatic expansion to point 4, and finally the pressure is released at constant volume back to point 1. a) The compression ratio for this engine is Vi/V2 18, what is the ratio of the temperatures 72 and Ti...

  • A polytropic process for an ideal gas in one in which pressure and volume are related...

    A polytropic process for an ideal gas in one in which pressure and volume are related by = const., where n is a constant. It is a generalization of the special processes considered earlier. Thus n = 0 defines an isobaric process, n = cp/cv an adiabatic process, n = 1 an isothermal process, and n = 8 an isochoric process. Suppose 1 kg of dry air at 280 K and 100 kPa undergoes a polytropic expansion in which the...

  • A monatomic ideal gas initially fills a container of volume V = 0.15 m3 at an...

    A monatomic ideal gas initially fills a container of volume V = 0.15 m3 at an initial pressure of P = 360 kPa and temperature T = 275 K. The gas undergoes an isobaric expansion to V2 = 0.55 m3 and then an isovolumetric heating to P2 = 680 kPa. a) Calculate the number of moles, n, contained in this ideal gas. b) Calculate the temperature of the gas, in kelvins, after it undergoes the isobaric expansion. c) Calculate the...

  • (17%) Problem 4: A monatomic ideal gas is in a state with volume of Vo at...

    (17%) Problem 4: A monatomic ideal gas is in a state with volume of Vo at pressure Po and temperature T . The following questions refer to the work done on the gas, W- -PA 17% Part (a) The gas undergoes an isochoric cooling from its initial state (I-Po-T0). For this process, choose what happens to the energy heat, and work from the following Grade Summary Deductions Potential 100% 0% Submissions OAU > 0, Δυ-o-w. Q < 0, and w...

  • 2. Isochoric/Adiabatic/Isobaric Cycle (10 pts) A heat engine using a monatomic gas follows the cycle shown in the PV diagram to the right. Between stages 1 and 2 the gas is at a constant volume,...

    2. Isochoric/Adiabatic/Isobaric Cycle (10 pts) A heat engine using a monatomic gas follows the cycle shown in the PV diagram to the right. Between stages 1 and 2 the gas is at a constant volume, and between 2 and 3 no heat is transferred in or out, between 3 and 1 the pressure is held constant (a) For each stage of this process, calculate in Joules the heat, Q, transferred to the gas, and the work, W, done by the...

  • Problem 19.62 Part A A heat engine using a diatomic ideal gas goes through the following...

    Problem 19.62 Part A A heat engine using a diatomic ideal gas goes through the following closed cycle What is the thermal efficiency of this heat engine? Isothermal compression until the volume is halved. ·Isobaric expansion until the volume is restored to its initial value Isochoric cooling until the pressure is restored to its initial value Submit My Answers Give Up Incorrect; One attempt remaining; Try Again Part B What is the thermal efficiency a Carnot engine operating between the...

  • One mole of an Ideal Gas, for which Cv,m = 3/2R, initially at 20.0 C and...

    One mole of an Ideal Gas, for which Cv,m = 3/2R, initially at 20.0 C and 1.00 x106 Pa undergoes a two-stage transformation: Stage 1: The gas is expanded isothermally and reversibly until the volume doubles. Stage 2: Beginning at the end of the first stage, the temperature is raised to 80.0 C at constant volume. For each stage, calculate the final pressure, heat(q), work(w), change in internal energy (ΔU), and enthalpy (ΔH). Calculate the total q, w, ΔU, and...

  • The working substance in an engine is 3.0 x 1023 He atoms. Initially in state 1,...

    The working substance in an engine is 3.0 x 1023 He atoms. Initially in state 1, the gas volume is V1=1.5 x 10-3 m3 and the pressure is P1=1.00 x 106 N/m2 . The gas undergoes a cycle that consists of four processes: (1→2) an isothermal expansion, (2→3) an isobaric compression until the volume is V3=2.00 x 10-3 m3 and the pressure is 2.00 x105 N/m2 , (3→4) an isothermal compression until the volume is V4=V1, and (4→1) an isochoric...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT