Question
  • Fill in the blanks regarding the electron transport chain and oxidative phosphorylation.

Fill in the blanks regarding the electron transport chain and oxidative phosphorylation

  1. Complex1 accepts electrons from NADH and uses coenzyme Q to transport them to complex 3.

  2. Complex 2 accepts electrons from FADH2 and uses coenzyme q to transport them from complex 3 to complex 4.

  3. The ATP synthase will transport 3H+ ions for every 2 ATP produces.

  4. This entire process occurs across the inner mitochondrial membrane.

0 0
Add a comment Improve this question Transcribed image text
Answer #1

Solution:

  1. Complex I (NADH dehydrogenase) accepts electrons from NADH and uses coenzyme Q to transport them to complex 3.

  2. Complex II (succinate dehydrogenase) accepts electrons from FADH2 and uses coenzyme Q to transport them to complex 3.

  3. The ATP synthase will transport 3H+ ions for every ATP produces.

  4. This entire process occurs across the inner mitochondrial membrane.

Add a comment
Know the answer?
Add Answer to:
Fill in the blanks regarding the electron transport chain and oxidative phosphorylation. Complex1 accepts electrons from...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • C. Considering Electron Transport: In LA3 Video 3, we are considering electron transport and oxidative phosphorylation....

    C. Considering Electron Transport: In LA3 Video 3, we are considering electron transport and oxidative phosphorylation. Please answer the following multiple choice questions (0.5 pts each) and follow instructions for two final drawings (2 pts each). 1. The electrons involved in electron transport come from (A) glycolysis (B) the pyruvate dehydrogenase complex (C) the citric acid cycle (D) all three processes 2. When NADH and FADH2 transfer their electrons to the electron transport chain, they are (A) oxidized (B) epimerized...

  • Cellular respiration: The Electron Transport Chain The breakdown of glucose ends during the Krebs cydle; however,...

    Cellular respiration: The Electron Transport Chain The breakdown of glucose ends during the Krebs cydle; however, it is important to note that the energy previously contained in glucose is mostly stored in NADH and FADHz. In the last step of celular respiration, the high-energy electrons within NADH and FADH2 are passed within a set of proteins found in the inner membrane of the mitochondrion, collectively known as the electron transport chain. The electrons provide the energy to create ATP, which...

  • Inhibitors of Oxidative Phosphorylation The following chemicals inhibit oxidative phosphorylation: Cyanide: Cyanide is a naturally occurring...

    Inhibitors of Oxidative Phosphorylation The following chemicals inhibit oxidative phosphorylation: Cyanide: Cyanide is a naturally occurring compound that binds to protein complex IV of the mitochondrial electron transport chain and prevents transfer of electrons from the protein. Metformin: At the cellular level, chemically synthesized metformin, a drug commonly prescribed for Type 2 diabetes, inhibits mitochondrial respiration by blocking complex I. Dinitrophenol: Dinitrophenol is a metabolic poison that can be sold legally as a pesticide. Although it is lethal to humans,...

  • QUESTION 2 What is the main mechanism of action for oxidative phosphorylation? A Uses the free...

    QUESTION 2 What is the main mechanism of action for oxidative phosphorylation? A Uses the free energy of the proton gradient generated as a result of transferring electrons from NADH OF FADH2 to O2 by a series of electron carriers for ATP production B. Uses the net yield of ATP produced by Glycolysis and the Citric Acid Cycle to produce more ATP. Uses the free energy released during redox reactions in Complexes I-IV (the electron transport chain) and is uncoupled...

  • 4. For each of the following sentences, fill in the blanks with the best word or...

    4. For each of the following sentences, fill in the blanks with the best word or phrase selected from the list below. Not all words or phrases will be used; each word or phrase can be used more than once. (2 point each; 34 points total) ADP lysosome oxidation phosphorylation NAD pyruvate plasma membrane oxidative phosphorylation acetyl CoA cytosol carbon dioxide nucleus NADH sucrose ubiquitination GTP electrons FADH2 reduction B-sheets matrix ATP FAD kinase vacuole H* mitochondria NADH inner membrane...

  • 9. In the electron transport chain picture above, how do electrons move from protein complex I to protein c...

    9. In the electron transport chain picture above, how do electrons move from protein complex I to protein complex II? 1. I need you to remember that "Q" is ubiquinone which gets reduced at proteins l & I, and oxidized at protein III. "Reduced" means gains electrons, "oxidized" means loses electrons. 2. I need you to remember how "Q" moves from protein I to protein Do you remember? Don't overthink it, Preeda. As far as scientists know right now, the...

  • Inhibitors of Oxidative Phosphorylation The following chemicals inhibit oxidative phosphorylation: Cyanide: Cyanide is a naturally occurring...

    Inhibitors of Oxidative Phosphorylation The following chemicals inhibit oxidative phosphorylation: Cyanide: Cyanide is a naturally occurring compound that binds to protein complex IV of the mitochondrial electron transport chain and prevents transfer of electrons from the protein. Metformin: At the cellular level, chemically synthesized metformin, a drug commonly prescribed for Type 2 diabetes, inhibits mitochondrial respiration by blocking complex I. Dinitrophenol: Dinitrophenol is a metabolic poison that can be sold legally as a pesticide. Although it is lethal to humans,...

  • Which two processes make up oxidative phosphorylation? A. Chemiosmosis and ATP synthesis B. Electron transport chain...

    Which two processes make up oxidative phosphorylation? A. Chemiosmosis and ATP synthesis B. Electron transport chain and chemiosmosis C. Pyruvate oxidation and electron transport chain D. Proton motive force and chemiosmosis What is the final electron acceptor in the electron transport chain? A. FADH2 B. Water C. Oxygen D. NADH

  • 27) Which one of the following best describes the electron transport chain? A) Electrons are passed...

    27) Which one of the following best describes the electron transport chain? A) Electrons are passed from one carrier to another releasing a little energy at each B) Hydrogen atoms are added to CO2 to make an energy-rich compound. C) Electrons are pumped across a membrane by active transport. D) Glucose is broken down to a three-carbon compound 28) After completion of the citric acid cycle, most of the usable energy from the one molecule is in the form of...

  • please help!! 37. What is the name of the enzyme that creates ATP in oxidative phosphorylation?...

    please help!! 37. What is the name of the enzyme that creates ATP in oxidative phosphorylation? A) ATP synthase B) ATP dehydrogenase C) ATP transferase D ) ATP ligase 38. This is another name for Coenzyme Q. A) ubiquinone B) quantum carrier C) glutamine D) vitamin B6 39. Choose the two correct paths taken by a pair of electrons as it travels down the electron-transport chain. (1) NADH - complex / -- COQ - Complex - C C . complex...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT