Question

A hypothetical population of 100,000 humans has 68,240 individuals with the blood type AA, 28,735 individuals with blood type AB and-3025 individuals with the blood type BB. a. What is the frequency of each genotype in this population? b. What is the frequency of the A allele? 8. 2p c. What is the frequency B allele? d. If the next generation contained 250,000 individuals, how many individuals would have blood type BB, assuming the population is in Hardy-Weinberg equilibrium?
0 0
Add a comment Improve this question Transcribed image text
Answer #1

According to the Hardy-Weinberg equilibrium sum of all the allelic frequency of a gene is always 1 and sum of all the genotypic frequency of all the genotype is always 1.

So p+q =1

p2+ 2pq+q2 =1

here p is the frequency of A allele

q is the frequency of B allele.

A - Frequency of AA genotype = AA population/ total population = 68240 / 100000 = 0.6824

Frequency of AB genotype = AA population/ total population = 28735/ 100000 = 0.28735

Frequency of BB genotype = AA population/ total population = 3025 / 100000 = 0.03025

AA= p2

AB = 2pq

BB = q2

B- Frequency of AA genotype is = 0.6824

Frequency of A allele = V0.6824 = 0.82

C - Frequency of BB genotype is = 0.03025

Frequency of B allele - V0.03025 = 0.18

D- Freqency of BB genotype is 0.03025

So number of individual which has BB genotype will be 250000 * 0.03025 = 7563 individual.

Add a comment
Know the answer?
Add Answer to:
A hypothetical population of 100,000 humans has 68,240 individuals with the blood type AA, 28,735 individuals...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A sample of 10,000 individuals was found to contain 6840 individuals with blood type AA, 2860...

    A sample of 10,000 individuals was found to contain 6840 individuals with blood type AA, 2860 individuals with AB, and 300 with BB. a. What is the frequency of each genotype in this population? b. If the next generation contained 25,000 individuals, how many do you predict would have blood type BB, assuming the population is in Hardy-Weinberg equilibrium?

  • 12. Why is defining what a species is so difficult? (3 pts) 13. Describe the three...

    12. Why is defining what a species is so difficult? (3 pts) 13. Describe the three patterns of population dispersion and provide one example of a species that is dispersed in each pattern? (6 pts) 14. What does it mean to be a K-selected species versus an r-selected species? DO NOT JUST DEFINE THE TERMS! (4 pts) 15. A hypothetical population of 10,000 humans has 6840 individuals with the blood type AA, 2860 individuals with blood type AB and 300...

  • MN blood type in humans is determined by two alleles at a single co-dominant locus; these...

    MN blood type in humans is determined by two alleles at a single co-dominant locus; these alleles are LM and LN. In a sample of 1190 individuals , it was found that: 75 had type M blood (LMLM) 800 had type MN blood (LMLN) 315 had type N blood (LNLN) Given this population data, calculate the observed allele frequencies and the expected number of individuals of each genotype. For allele frequency reposes, please round to 3 decimal places (ex. 0.000)....

  • 13. The following genotype frequencies are observed in a population of 500 individuals. Genotype AA Number...

    13. The following genotype frequencies are observed in a population of 500 individuals. Genotype AA Number of individuals 210 180 Aa aa 110 Total = 500 Answer the following questions about this population (6 points total). a. What is the frequency of the “A” allele? Show your work. (1 point) b. What is the frequency of the “a” allele? Show your work. (1 point) c. Does this locus appear to be at Hardy-Weinberg Equilibrium in this population? Show your work....

  • 1. A particular gene in a given population of individuals has two alleles, A and a....

    1. A particular gene in a given population of individuals has two alleles, A and a. The frequency of the A allele equals the frequency of the a allele. What are the expected genotype frequencies, assuming the population is in Hardy-Weinberg equilibrium? AA = 0.5, aa = 0.5 AA = 0.25, Aa = 0.50, aa = 0.25 O A = 0.5, a = 0.5 The answer cannot be determined because the allele frequencies are not provided.

  • An Amazon rainforest population of leaf beetles has 100,000 individuals.

     An Amazon rainforest population of leaf beetles has 100,000 individuals. The beetles exist in two color morphs, purple and green. Purple beetles live on epiphytic orchid blooms whereas the green beetles inhabit the leaves of the orchid plants. The color is controlled by two alleles at a single gene locus. The purple allele (P) is dominant to the green allele (p) 36% of the beetle population is green and the other 64% of the population is purple. Assuming the population...

  • 1. You are studying a population of sandblossoms (Linanthus parryae) that has individuals with blue and...

    1. You are studying a population of sandblossoms (Linanthus parryae) that has individuals with blue and white flowers. The allele for white flowers (A) is dominant to the allele for blue flowers (a). In the population you survey, 91 out of 100 individuals have white flowers. Based on this information: a. Calculate the frequency of the A and a alleles. b. Calculate the numbers of each genotype. 2. A population of snapdragons (Antirrhinum hispanicum) has two additive alleles for flower...

  • 1.)If the population frequencies of two alleles at a locus are B = 0.5 and b...

    1.)If the population frequencies of two alleles at a locus are B = 0.5 and b = 0.5, what is onepossible set of frequencies for the three resulting genotypes that would NOT reflect Hardy- Weinberg equilibrium? 2.)In a population that is in Hardy-Weinberg equilibrium, the frequency of the homozygous recessive genotype is 0.09. What is the frequency of individuals that are homozygous for the dominant allele? 3.)In humans, Rh-positive individuals have the Rh antigen on their red blood cells, while...

  • 1. Fixation of Dominant Alleles Start with a population that has a gene with two alleles (A and a...

    1. Fixation of Dominant Alleles Start with a population that has a gene with two alleles (A and a) with classical Mendelian dominance that are at equal frequency (p0.5. q 0.5). Assume this first generation is at hardy Weinberg equilibrium. Calculate the genotype frequencies AA- a. Aa b. Now assume some environmental change that makes the recessive phenotype completely unfit (fitness- 0). Calculate the allele frequencies and genotype frequencies in the second generation. (Hint: Your calculations might be easier if...

  • Evolution 1. Assume this population is in Hardy-Weinberg equilibrium. In a population of 120 cats, 35...

    Evolution 1. Assume this population is in Hardy-Weinberg equilibrium. In a population of 120 cats, 35 are black. Black cats have the bb genotype. Find the allelic frequency of the dominant and recessive allele. 2. Assume this population is in Hardy-Weinberg equilibrium. A litter of 10 puppies has both tipped ears (a) and floppy ears (A). If 4 puppies have tipped ears in the litter. What is the frequency of the recessive allele? 3. Assume this population is in Hardy-Weinberg...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT