Question

2. Consider a symplified servo system with tachometer, current, and position feedback, shown in Figure 2, where a = 5.x, b =

a= 5.3
b= 2.9
0 0
Add a comment Improve this question Transcribed image text
Answer #1

Rpos Kort RIS) a Kent ܬ stb S S ple) Transfer function P() RS) kposa Kool Koura. I stb po RIS 52 1 + Keuroa stb + Kvol-Kapa +(a) put a=513, b=29 on PCS R9 5.9 kpose kool. KCURY 53 +12.9+ Kuvo 5:3) s2 +5.3 Kvo! Kevy.S+ 5.3 Keur Kuor. Kpop To find theRange of stability Keuro kpos <9x109 and Kuolto 5.3 kpos • kuolo Keur b ? R® RS 83 +12.9+503 Keur)s? +5.3 KUOL. KEURS + 5.3 KFor unit step input RO =Ys ess = dt se ys[- S70 5.3 koos. Kuol keur 33 + +(5:3 Kurt 2.97s2 + 5.3 kvol Kurs + 5.3 KUOL• Keur

Add a comment
Know the answer?
Add Answer to:
a= 5.3 b= 2.9 2. Consider a symplified servo system with tachometer, current, and position feedback,...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Question 2 a) Consider the control system in Figure 2(a). Determine the transient response characteristics (rise...

    Question 2 a) Consider the control system in Figure 2(a). Determine the transient response characteristics (rise time, peak time, maximum overshoot and settling time) and the steady state error for the system. (2 marks) b) To improve the relative stability, the tachometer feedback are employed as shown in Figure 2b). i Determine the value in so that the damping ratio of the system is 0.5. (1 % marks) From the result obtained in , evaluate the transient response characteristics (rise...

  • Question 2 a) Consider the control system in Figure 2(a). Determine the transient response characteristics (rise...

    Question 2 a) Consider the control system in Figure 2(a). Determine the transient response characteristics (rise time, peak time, maximum overshoot and settling time) and the steady state error for the system. (2 marks) b) To improve the relative stability, the tachometer feedback are employed as shown in Figure 2(b). i Determine the value Kso that the damping ratio of the system is 0.5. (1 % marks) i. From the result obtained in (), evaluate the transient response characteristics (rise...

  • Question 2 a) Consider the control system in Figure 2(a). Determine the transient response characteristics (rise...

    Question 2 a) Consider the control system in Figure 2(a). Determine the transient response characteristics (rise time, peak time, maximum overshoot and settling time) and the steady state error for the system. (2 marks) b) To improve the relative stability, the tachometer feedback are employed as shown in Figure 2(b). Determine the value K, so that the damping ratio of the system is 0.5. (1 % marks) i. From the result obtained in (), evaluate the transient response characteristics (rise...

  • question 2 Question 2 a) Consider the control system in Figure 2(a). Determine the transient response...

    question 2 Question 2 a) Consider the control system in Figure 2(a). Determine the transient response characteristics (rise time, peak time, maximum overshoot and settling time) and the steady state error for the system (2 marks) b) To improve the relative stability, the tachometer feedback are employed as shown in Figure 2(b). Determine the value Kin so that the damping ratio of the system is 0.5. (1 % marks) it. From the result obtained in 0. evaluate the transient response...

  • . a) Consider the control system in Figure 2(a). Determine the transient response characteristics (rise time,...

    . a) Consider the control system in Figure 2(a). Determine the transient response characteristics (rise time, peak time, maximum overshoot and settling time) and the steady state error for the system. (2 marks) b) To improve the relative stability, the tachometer feedback are employed as shown in Figure 2(b). i. Determine the value Kn so that the damping ratio of the system is 0.5. (1 % marks) ii. From the result obtained in (), evaluate the transient response characteristics (rise...

  • a) Consider the control system in Figure 2(a). Determine the transient response characteristics (rise time, peak...

    a) Consider the control system in Figure 2(a). Determine the transient response characteristics (rise time, peak time, maximum overshoot and settling time) and the steady state error for the system. (2 marks) b) To improve the relative stability, the tachometer feedback are employed as shown in Figure 2(b). i Determine the value K, so that the damping ratio of the system is 0.5. (1 % marks) ii. From the result obtained in (), evaluate the transient response characteristics (rise time,...

  • Question 2 System Stability in the s-Domain and in the Frequency Domain: Bode Plots, Root Locus...

    Question 2 System Stability in the s-Domain and in the Frequency Domain: Bode Plots, Root Locus Plots and Routh- Hurwitz Criterion ofStability A unit feedback control system is to be stabilized using a Proportional Controller, as shown in Figure Q2.1. Proportional Controller Process The process transfer function is described as follows: Y(s) G(s) s2 +4s 100 s3 +4s2 5s 2 Figure Q2.1 Your task is to investigate the stability of the closed loop system using s-domain analysis by finding: a)...

  • Problem 51: (25 points) Figure 5 is an example of a feedback control system that is designed to r...

    Problem 51: (25 points) Figure 5 is an example of a feedback control system that is designed to regulate the angular position θ(t) of a motor shaft to a desired value θr(t). The signal e(t) represents the error between the measured shaft angle θ(t) and the desired shaft angle θ (t). The Laplace transforms ofa,(t), θ(t), and e(t) are denoted as ΘR(s), θ(s), and E(s), respectively. The control gains Ki and K2 are chosen by the control engineer to achieve...

  • Solve for PART C Only a = -4.5 b = +3.3i Prob. 2. (25 pts) Consider...

    Solve for PART C Only a = -4.5 b = +3.3i Prob. 2. (25 pts) Consider the following unity feedback control system Controller Plant R(S) toE(s) Gc(s) C($) 52 + 1) a) (10pts)Design a PID controller to locate the desired root at Sdesired = a + jß to meet the following design specifications: i) PO < 35% (5 > 0.35) ii) ts < 3 sec iii) The steady-state error is zero for the unit step response. b) (5pts) Sketch the...

  • a) Consider the control system in Figure 2(a). Determine the transient response characteristics (rise time, peak...

    a) Consider the control system in Figure 2(a). Determine the transient response characteristics (rise time, peak time, maximum overshoot and settling time) and the steady state error for the system. (2 marks) b) To improve the relative stability, the tachometer feedback are employed as shown in Figure 2(b). i. Determine the value Kn so that the damping ratio of the system is 0.5. (1 22 marks) ii. iii. From the result obtained in (i), evaluate the transient response characteristics (rise...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT