Question

x(t) y(d) Consider the spring-mass-damper system above travelling along a bumpy surface with a height change. The damping rat

0 0
Add a comment Improve this question Transcribed image text
Answer #1

ivem arneng IM im m aut k le k ow thatthu value .we IK เทto

Add a comment
Know the answer?
Add Answer to:
x(t) y(d) Consider the spring-mass-damper system above travelling along a bumpy surface with a height change....
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • QUESTION 2: Consider this forced translational mass-spring-damper (MSD) system: The input is the external force "F(t)"...

    QUESTION 2: Consider this forced translational mass-spring-damper (MSD) system: The input is the external force "F(t)" and the output is position "x(t)." The transfer function for this system is g) - 6 - Mz? +BS+K It is known that M - 1 kg. B - 10 mm, and there are three possible values of K: (K = 16 K = 34 NK-89 The only possible external forces "F(t)" have the following Laplace transforms: 1) F,(s) - 0 (corresponding to external...

  • Problem 1. Consider the following mass, spring, and damper system. Let the force F be the...

    Problem 1. Consider the following mass, spring, and damper system. Let the force F be the input and the position x be the output. M-1 kg b- 10 N s/m k 20 N/nm F = 1 N when t>=0 PART UNIT FEEDBACK CONTROL SYSTEM 5) Construct a unit feedback control for the mass-spring-damper system 6) Draw the block diagram of the unit feedback control system 7) Find the Transfer Function of the closed-loop (CL) system 8) Find and plot the...

  • a can be skipped Consider the following second-order ODE representing a spring-mass-damper system for zero initial...

    a can be skipped Consider the following second-order ODE representing a spring-mass-damper system for zero initial conditions (forced response): 2x + 2x + x=u, x(0) = 0, *(0) = 0 where u is the Unit Step Function (of magnitude 1). a. Use MATLAB to obtain an analytical solution x(t) for the differential equation, using the Laplace Transforms approach (do not use DSOLVE). Obtain the analytical expression for x(t). Also obtain a plot of .x(t) (for a simulation of 14 seconds)...

  • Consider the mass-spring-damper system depicted in the figure below, where the input of the system is...

    Consider the mass-spring-damper system depicted in the figure below, where the input of the system is the applied force F(t) and the output of the system is xít) that is the displacement of the mass according to the coordinate system defined in that figure. Assume that force F(t) is applied for t> 0 and the system is in static equilibrium before t=0 and z(t) is measured from the static equilibrium. b m F Also, the mass of the block, the...

  • 3. Consider the following mass-spring-damper system. Let m= 1 kg, b = 10 Ns/m, and k...

    3. Consider the following mass-spring-damper system. Let m= 1 kg, b = 10 Ns/m, and k = 20 N/m. b m F k a) Derive the open-loop transfer function X(S) F(s) Plot the step response using matlab. b) Derive the closed-loop transfer function with P-controller with Kp = 300. Plot the step response using matlab. c) Derive the closed-loop transfer function with PD-controller with Ky and Ka = 10. Plot the step response using matlab. d) Derive the closed-loop transfer...

  • (4) Consider the 2nd order equation for a mass-spring-damper system, mx'' + bx' + kx =...

    (4) Consider the 2nd order equation for a mass-spring-damper system, mx'' + bx' + kx = f(t) a) Assuming f(t) is a step function, find the Laplacian transform, X(s) (include terms for the initial conditions xo, vo). b) Assume m = 1, b = 5, and k = 6, and x(0) = 3, x’(0) = 0. Find the time-domain solution (take the inverse transform). (5)Find the Laplace transform of y(t) from the differential equation, assuming u(t) is a step function....

  • Consider the Spring-Mass-Damper system: 17 →xt) linn M A Falt) Ffl v) Consider the following system...

    Consider the Spring-Mass-Damper system: 17 →xt) linn M A Falt) Ffl v) Consider the following system parameter values: Case 1: m= 7 kg; b = 1 Nsec/m; Fa = 3N; k = 2 N/m; x(0) = 4 m;x_dot(0)=0 m/s Case2:m=30kg;b=1Nsec/m; Fa=3N; k=2N/m;x(0)=2m;x_dot(0)=0m/s Use MATLAB in order to do the following: 1. Solve the system equations numerically (using the ODE45 function). 2. For the two cases, plot the Position x(t) of the mass, on the same graph (include proper titles, axis...

  • . (40pts) Consider a spring-mass-damper system shown below, where the input u() is displacement input at...

    . (40pts) Consider a spring-mass-damper system shown below, where the input u() is displacement input at the right end of the spring k3 and x() is the displacement of mass ml. (Note that the input is displacement, NOT force) k3 k1 m2 (a) (10pts) Draw necessary free-body diagrams, and the governing equations of motion of the system. (b) (10pts) Find the transfer function from the input u() to the output x(t). (c) (10pts) Given the system parameter values of m1-m2-1,...

  • Exercise: Given the mass-damper-spring network below: x(t) flt) m- 1kg; X(s) F(s) (s2 +10s + 20) ...

    Exercise: Given the mass-damper-spring network below: x(t) flt) m- 1kg; X(s) F(s) (s2 +10s + 20) b-10N-m/s 20N/m; f(t)-1 N Show how each of the controller gain, Kp, Kd and Ki contributes to obtain Fast rise time Minimum overshoot i. No steady state error MATLAB code S-tf('s') Sys 1/(sA2+10*s+20) Step Proportional Controller: Kp 300 % for faster reponse Gpspid(Кр) sys_p-feedback(sys Gp, 1) t-0:0.01:2 step(sys, sys p) Proportional-Derivative Controller: Kp 300 Kd-10 Gpdspid(Kp,0,Kd) sys pd feedback(Gpd sys, 1) step( sys, sys_p,...

  • 1. The change of position of the center of mass of a rigid body in a mechanical system is being monitored. At time t 0, when the initial conditions of the system were x = 0.1 m and x -0m/s, a ste...

    1. The change of position of the center of mass of a rigid body in a mechanical system is being monitored. At time t 0, when the initial conditions of the system were x = 0.1 m and x -0m/s, a step input of size 10 N began to apply to the system. The response of the system was represented by this differential equation: 2r + 110x + 500 x = 10 a) Write the order of the system, its...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT