Question

1. SIMPLE HARMONIC OSCILLATOR PROBLENM We can describe rotational oscillators in a manner that is very similar to translational ones. Consider a solid disk of mass M and radius R that sits on a flat, level surface. A spring (spring constant, k) is attached to the center of the disk, and to a fixed wall. The spring is horizontal. There is sufficient friction to prevent the disk from sliding at the contact point with the surface, so if the spring is initially stretched the disk will rock back and forth about the contact point. Use torque ideas to obtain an expression for the angular frequency of this oscillation (for small initial displacement). Your expression may contain at most g, M, R and k. Hint: remember the rotational inertia of the disk needs to be calculated about the pivot point, not the center of mass
0 0
Add a comment Improve this question Transcribed image text
Answer #1

2. 2 Usi 2 3 M 了m

Add a comment
Know the answer?
Add Answer to:
1. SIMPLE HARMONIC OSCILLATOR PROBLENM We can describe rotational oscillators in a manner that is very...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Consider a bicycle wheel of mass M and radius R that sits on a flat, level...

    Consider a bicycle wheel of mass M and radius R that sits on a flat, level surface, such that the surface is tangent to the wheel. One end of a spring (spring constant, k) is attached to bicycle wheel’s hub, and the other end is fixed to a vertical wall. The spring is horizontal. There is sufficient friction to prevent the wheel from sliding at the point of contact with the surface. When the center of the wheel is directly...

  • Consider a bicycle wheel of mass M and radius R that sits on a flat, level...

    Consider a bicycle wheel of mass M and radius R that sits on a flat, level surface, such that the surface is tangent to the wheel. One end of a spring (spring constant, k) is attached to bicycle wheel's hub, and the other end is fixed to a vertical wall. The spring is horizontal. There is sufficient friction to prevent the wheel from sliding at the point of contact with the surface. When the center of the wheel is directly...

  • Problem 1 (Harmonic Oscillators) A mass-damper-spring system is a simple harmonic oscillator whose dynamics is governed...

    Problem 1 (Harmonic Oscillators) A mass-damper-spring system is a simple harmonic oscillator whose dynamics is governed by the equation of motion where m is the mass, c is the damping coefficient of the damper, k is the stiffness of the spring, F is the net force applied on the mass, and x is the displacement of the mass from its equilibrium point. In this problem, we focus on a mass-damper-spring system with m = 1 kg, c-4 kg/s, k-3 N/m,...

  • A simple harmonic oscillator consists of a block attached to a spring, moving back and forth...

    A simple harmonic oscillator consists of a block attached to a spring, moving back and forth on a frictionless horizontal surface. Suppose the mass of the box is 5.0 kg. The motion is started by holding the box at .50m from its central position, using a force of 40.0 N. Then the box is let go and allowed to perform simple harmonic motion. What is the amplitude of the motion? What is the spring constant k? What is the maximum...

  • A simple harmonic oscillator consists of a block attached to a spring, moving back and forth...

    A simple harmonic oscillator consists of a block attached to a spring, moving back and forth on a frictionless horizontal surface. Suppose the mass of the box is 5.0 kg. The motion is started by holding the box at 0.50 m from its central position, using a force of 40.0 N. Then the box is let go and allowed to perform simple harmonic motion. (a) What is the amplitude of the motion? (b) What is the spring constant k? (c)...

  • 6. A disk with a mass M, a radius R, and a rotational inertia of I-...

    6. A disk with a mass M, a radius R, and a rotational inertia of I- MR is attached to a horizontal spring which has a spring constant of as shown in the diagram. When the spring is stretched by a distance x and then released from rest, the disk rolls without slipping while the spring is attached to the frictionless axle within the center of the disk (a) Calculate the maximum translational velocity of the disk in terms of...

  • A simple harmonic oscillator consists of a block attached to a spring, moving back and forth...

    A simple harmonic oscillator consists of a block attached to a spring, moving back and forth on a frictionless horizontal surface. Suppose the mass of the box is 5.0 kg. The motion is started by holding the box at 0.50 m from its central position, using a force of 40.0 N. Then the box is let go and allowed to perform simple harmonic motion. roosoo - 5m o +5 m (a) (2 points) What is the amplitude of the motion?...

  • M A spring connects a fixed wall to the top of the uniform cylinder on a...

    M A spring connects a fixed wall to the top of the uniform cylinder on a horizontal surface. Originally the spring is horizontal, and it is neither extended nor compressed. The cylinder is rolled slightly to one side, and released from rest. The cylinder rolls without slipping on the surface, and the centre of mass follows a simple harmonic oscillator. You can treat the spring as being horizontal throughout the motion. The mass of the cylinder is M, the radius...

  • Elementary Differential Equation Unit Step Function Problem Project 2 A Spring-Mass Event Problenm A mass of...

    Elementary Differential Equation Unit Step Function Problem Project 2 A Spring-Mass Event Problenm A mass of magnitude m is confined to one-dimensional motion between two springs on a frictionless horizontal surface, as shown in Figure 4.P.3. The mass, which is unattached to either spring, undergoes simple inertial motion whenever the distance from the origin of the center point of the mass, x, satisfies lxl < L. When x 2 L, the mass is in contact with the spring on the...

  • 1. (30pt) LC Circuit and Simple Harmonic Oscillator (From $23.12 RLC Series AC Circuits) Let us...

    1. (30pt) LC Circuit and Simple Harmonic Oscillator (From $23.12 RLC Series AC Circuits) Let us first consider a point mass m > 0 with a spring k> 0 (see Figure 23.52). This system is sometimes called a simple harmonic oscillator. The equation of motion (EMI) is given by ma= -kr (1) where the acceleration a is given by the second derivative of the coordinate r with respect to time t, namely dr(t) (2) dt de(t) (6) at) (3) dt...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT