Question

4. Consider viscous laminar flow of water between two stationary parallel plates as shown with velocity given by u = elby - y
0 0
Add a comment Improve this question Transcribed image text
Answer #1

Date : 1 given, uze (by-y2 Here at yo ya Luzo & at y= a uzo i uze(by - 4 ore bax a2 ог each. — а) eto, ato, b-a=0 /a=b] - AnvDate Thyza - ledu u Eae : Y=a= -aeu la Anases a shear stress at yra where u viscosity of water Is there shans stress ever Zer

Add a comment
Know the answer?
Add Answer to:
4. Consider viscous laminar flow of water between two stationary parallel plates as shown with velocity...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • help b) Laminar viscous flow between two parallel plates are shown in the figure below. Both...

    help b) Laminar viscous flow between two parallel plates are shown in the figure below. Both bottom plate and top plate moving in the same direction, their velocities are U6,U respectively and they are not equal to each other. Assume that pressure gradient between point A and point B is zero. By using Navier Stokes equations find the shear stress distribution and velocity profile for that fluiği. Plot both velocity profile and shear distribution. (Show assumptions that you make and...

  • please help?? b) Laminar viscous flow between two parallel plates are shown in the figure below....

    please help?? b) Laminar viscous flow between two parallel plates are shown in the figure below. Both bottom plate and top plate moving in the same direction, their velocities are Un,Ut respectively and they are not equal to each other. Assume that pressure gradient between point A and point B is zero. By using Navier Stokes equations find the shear stress distribution and velocity profile for that fluid. Plot both velocity profile and shear distribution. (Show assumptions that you make...

  • 1. As seenfrom figure, there is a laminar and viscous fluid flow betweentwo parallel plates where...

    1. As seenfrom figure, there is a laminar and viscous fluid flow betweentwo parallel plates where the one is moving with velocity y, other one is stationary. There exists pressure gradient in x direction. The bottom stationary plate is a porous plate andfluid is injected into the channel with V velocity. If theflow is steady, fully developed and incompressible flow, derive the velocity profile. Uo Vo 1. As seenfrom figure, there is a laminar and viscous fluid flow betweentwo parallel...

  • The velocity distribution for laminar flow between parallel plates is given by where h is the...

    The velocity distribution for laminar flow between parallel plates is given by where h is the distance separating the plates and the origin is placed midway between the plates Consider a flow of water at 15° C, with umaz 1.65 m/s and h = 0.89 mm. Calculate the shear stress on the upper plate and give its direction. Use Table A.8 Ti N/m2 yr

  • Consider steady laminar viscous fluid between two parallel plates with distance h separated from each other....

    Consider steady laminar viscous fluid between two parallel plates with distance h separated from each other. A pressure gradient dp/dx drives the flow. By considering forces acting on a small volume between the parallel plates, obtain the velocity profile, the volumetric flow rate, and the average velocity in terms of centerline velocity Umax Umax

  • Consider a fully developed laminar flow of an incompressible Newtonian fluid between two infinite parallel plates,...

    Consider a fully developed laminar flow of an incompressible Newtonian fluid between two infinite parallel plates, separated by a distance of 2B. The z coordinate is the direction of the flow. The width of the plates is 2W (direction y). The coordinate axis is located half of the 2 plates. a) Obtain the distribution of speeds in steady state. b) Obtain the expression for the maximum velocity and write the velocity distribution of part a) as a function of the...

  • 2- (40 pts) Using Navier-Stokes equations, in class we developed the velocity profile between two stationary...

    2- (40 pts) Using Navier-Stokes equations, in class we developed the velocity profile between two stationary infinite parallel plates for a laminar, fully developed, steady flow. Here is the exact same flow: u(y) = 2 ( 0) (02 – hy) v= 0 a) Find the expression for average velocity for such flow. b) Use the average velocity you calculated in (a) to find the expression for volume flow rate per unit width into the page. c) If at x=105 m...

  • Problem 1: Differential Relations for a Fluid Particle (25 points) Two horizontal, infinite, parallel plates are...

    Problem 1: Differential Relations for a Fluid Particle (25 points) Two horizontal, infinite, parallel plates are spaced a distance b apart. A viscous liquid is contained between the plates. The bottom plate is fixed, and the upper plate moves parallel to the bottom plate with a velocity U. Assume no-slip boundary conditions. There is no pressure gradient in the direction of flow (a) Demonstrate using the Navier-Stokes equation in the x-direction that the velocity profile is of the form: (15...

  • An incompressible, viscous fluid is placed between horizontal, infinite, parallel plates as shown below. The two...

    An incompressible, viscous fluid is placed between horizontal, infinite, parallel plates as shown below. The two plates move in opposite directions with constant velocities U 10 m/s and U2 = 5 m/s as shown. The pressure gradient in the x direction is zero and the only external force is gravity (in the y-direction). Use the Navier-Stokes equations to determine where the fluid velocity is zero (in terms of a fraction of b, i.e. 0.75 for y-75% of b) Enter Number...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT