Question

The velocity distribution for laminar flow between parallel plates is given by where h is the distance separating the plates and the origin is placed midway between the plates Consider a flow of water at 15° C, with umaz 1.65 m/s and h = 0.89 mm. Calculate the shear stress on the upper plate and give its direction. Use Table A.8 Ti N/m2 yr

1 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
The velocity distribution for laminar flow between parallel plates is given by where h is the...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • The velocity distribution for fluid flow between two parallel plates is given below: Where h is...

    The velocity distribution for fluid flow between two parallel plates is given below: Where h is distance separating the two plates and the origin placed midway between the plates. Consider the flow of water at 35oC with a maximum velocity (Umax) of 0.075 m/s and h = 5mm. Calculate the force on 1.5 m2 of lower plate. [5 marks]

  • help b) Laminar viscous flow between two parallel plates are shown in the figure below. Both...

    help b) Laminar viscous flow between two parallel plates are shown in the figure below. Both bottom plate and top plate moving in the same direction, their velocities are U6,U respectively and they are not equal to each other. Assume that pressure gradient between point A and point B is zero. By using Navier Stokes equations find the shear stress distribution and velocity profile for that fluiği. Plot both velocity profile and shear distribution. (Show assumptions that you make and...

  • please help?? b) Laminar viscous flow between two parallel plates are shown in the figure below....

    please help?? b) Laminar viscous flow between two parallel plates are shown in the figure below. Both bottom plate and top plate moving in the same direction, their velocities are Un,Ut respectively and they are not equal to each other. Assume that pressure gradient between point A and point B is zero. By using Navier Stokes equations find the shear stress distribution and velocity profile for that fluid. Plot both velocity profile and shear distribution. (Show assumptions that you make...

  • Consider steady, incompressible, laminar flow of a Newtonian fluid in the narrow gap between two infinite...

    Consider steady, incompressible, laminar flow of a Newtonian fluid in the narrow gap between two infinite parallel plates. The top plate is moving at speed V, and the bottom plate is moving in the opposite direction at speed V. The distance between these two plates is h, and gravity acts in the negative z-direction. There is no applied pressure other than hydrostatic pressure due to gravity. Calculate the velocity and estimate the shear stress acting on the bottom plate Moving...

  • Question 5 [20 marks) Consider Coutte flow, which occurs when we have a fluid suspended between two parallel plates, on...

    Question 5 [20 marks) Consider Coutte flow, which occurs when we have a fluid suspended between two parallel plates, one of which is moving and the other of which is stationary. The velocity profile between these two plates is linear. We have water between these two plates and distance separating them of 1 mm. Given this information: (a) What is the force exerted on the stationary plate per m2 if the moving plate has a velocity of 0.1 m/s in...

  • 4. Consider viscous laminar flow of water between two stationary parallel plates as shown with velocity...

    4. Consider viscous laminar flow of water between two stationary parallel plates as shown with velocity given by u = elby - y2) where e, a, and b are constants and y = 0 at the bottom: eby - ey? F T (eby2-cys we LI a) (7 points) Find a in terms of e and b. b) (8 points) Find the shear stress at y = a. Is the shear stress ever zero? If so, where?

  • 1. As seenfrom figure, there is a laminar and viscous fluid flow betweentwo parallel plates where...

    1. As seenfrom figure, there is a laminar and viscous fluid flow betweentwo parallel plates where the one is moving with velocity y, other one is stationary. There exists pressure gradient in x direction. The bottom stationary plate is a porous plate andfluid is injected into the channel with V velocity. If theflow is steady, fully developed and incompressible flow, derive the velocity profile. Uo Vo 1. As seenfrom figure, there is a laminar and viscous fluid flow betweentwo parallel...

  • Consider a fully developed laminar flow of an incompressible Newtonian fluid between two infinite parallel plates,...

    Consider a fully developed laminar flow of an incompressible Newtonian fluid between two infinite parallel plates, separated by a distance of 2B. The z coordinate is the direction of the flow. The width of the plates is 2W (direction y). The coordinate axis is located half of the 2 plates. a) Obtain the distribution of speeds in steady state. b) Obtain the expression for the maximum velocity and write the velocity distribution of part a) as a function of the...

  • Problem 3- For flow of an incompressible, Newtonian fluids between parallel plates, the velocity ...

    Problem 3- For flow of an incompressible, Newtonian fluids between parallel plates, the velocity distribution between the plate is given by 1 dP 2μ dr where y is the direction from one plate (y-0) to another (y-w),and x is the direction of flow a) What is the expression for the rate of deformation matrix? b) What is the expression for the stress matrix? c) At the center of the flow y w/2, what is the direction of internal forcing due...

  • A Newtonian body wash undergoes steady shear between two horizontal parallel plates. The lower plate is...

    A Newtonian body wash undergoes steady shear between two horizontal parallel plates. The lower plate is fixed, and the upper plate of 1kg moves with constant velocity of 20 m/s. The distance between the plates is constant at 5 mm. The area of the upper plate in contact with the fluid is 0.5 m2 . a) What is the viscosity of the product and b) the momentum diffusivity if its density is 1010 kg/m3?

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT