Question

Question #3: The stress-strain diagram for a steel alloy having an original diameter of 0.45 in. and a gage length of 2.5 in. is given in the Fig. If the specimen is loaded until it is stressed to 75 ksi, determine the modulus of elasticity for the material, amount of elastic recovery, the increase in the gage length, and modulus of resilience (ur) before and after the load application. σ (ksi) 80 70 60 50 40 30 20 10 e (in.fin.) 004 08 012 016 020 024 0.28 Question #4: aft is subjected to the axial loads shown. Determine the displacement of end A with the diameters of each segment are dAB-07 in, dBc = 0.95 in, dCD-o55 in. Set Ea? e include free body diagrams and an internal force diagram in your answer. in. 150 in 100 in. 2 kip
0 0
Add a comment Improve this question Transcribed image text
Answer #1

Length 2.Su) tog dua.tes % 4-Go , o.ool loord.no te? 4 o (o , ס creat 0 jenjth besore load application

Add a comment
Know the answer?
Add Answer to:
Question #3: The stress-strain diagram for a steel alloy having an original diameter of 0.45 in....
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • The stress–strain diagram for a steel alloy having an original diameter of 0.5 in. and a...

    The stress–strain diagram for a steel alloy having an original diameter of 0.5 in. and a gauge length of 2 in. is given in the figure. If the specimen is loaded until it is stressed to 90 ksi, determine the approximate amount of elastic recovery and the increase in the gauge length after it is unloaded. Determine also approximately the modulus of resilience and the modulus of toughness for the material. in. /in.) 0 0 - 0.05 0.10 0.15 0.20...

  • Strength of material The stress-strain diagram for an aluminum alloy specimen having an original diameter of...

    Strength of material The stress-strain diagram for an aluminum alloy specimen having an original diameter of 0.5 in. and a gage length of 2 in, is shown in the figure below. σ (ksi) 70 60 50 40 30 20 10 0 e (in./in.) 0 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.2 0 00025 0.0050.0075 0.01 0.0125001500175 0.02 00255 0.025 Tap image to zoom Part A Determine the modulus of resilience. Express your answer to three significant figures....

  • Problem 3.12 The stress-strain diagram for an aluminum alloy specimen having an original diameter of 0.5...

    Problem 3.12 The stress-strain diagram for an aluminum alloy specimen having an original diameter of 0.5 in and a gage length of 2 in is shown in the figure below. (Figure 1) Figure 1 of 1 > o (ksi) 70 60 50 40 30 20 10 0 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.2 € (in./in.) 0 0.0025 0.0050.0075 0.01 0.0125001500175 0.02 0.02550025 VAL nili Determine the modulus of resilience. Express your answer to three significant figures....

  • Problem 3 σ(ksi) The elastic portion of the tension stress-strain diagram for an aluminum alloy is...

    Problem 3 σ(ksi) The elastic portion of the tension stress-strain diagram for an aluminum alloy is shown in the figure. The specimen used for the test has a gage length of 2 in. and a diameter of 0.5 in. If the applied load is 10 kip, determine the new diameter of the specimen. The shear modulus is G-3.8(10') ksi. 60

  • 3-5. The stress-strain diagram for a steel alloy having an original diameter of 12 mm and...

    3-5. The stress-strain diagram for a steel alloy having an original diameter of 12 mm and a gauge length of 50 mm is given in the figure. If the specimen is loaded until it is stressed to 500 MPa, determine the approximate amount of elastic recovery and the increase in the gauge length after it is unloaded. O (MPa) 600 - E(mm/mm) 0 0 0.04 0.08 0.12 0.16 0.20 0.24 0.28 0.0005 0.001 0.0015 0.002 0.0025 0.003 0.0035 Prob. 3-5

  • Problem No. 2 (Figure 2) (ksi) Figure 2. Upper scale Lower scale The stress-strain diagram of...

    Problem No. 2 (Figure 2) (ksi) Figure 2. Upper scale Lower scale The stress-strain diagram of a mild-steel specimen is shown in the figure. The specimen has a diameter of 0.50-inch and gage length of 2-inch. Determine the following: (a) yield strength (oy); (b) ultimate strength (out); (c) Young's modulus (E); (d) modulus of resilience; (e) if the specimen is loaded to 105 ksi and then unloaded completely, determine the permanent increase in the gage length € (in/in) 0 0.04...

  • Problem 1: A tension test was performed on a steel specimen having an original diameter of...

    Problem 1: A tension test was performed on a steel specimen having an original diameter of 0.50 in. and gage length of 2.00 in. The final diameter is de .38 in. The data is listed in the table. 1) Plot the stress-strain diagram on engineering paper, so you can calculate the area easily; 2) Determine approximately the modulus of elasticity; 3) Find the yield stress by 0.2% offset method; 4) Calculate approximately the modulus of resilience; 5) Determine approximately the...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT