Question

A dominant allele (A) is found at equal frequency with a recessive allele (a) in a...

A dominant allele (A) is found at equal frequency with a recessive allele (a) in a population of mice. There is no selective force for this gene (fitness of all genotypes is the same). Which allele is most likely to become fixed in the population over time?

A The dominant allele, A

B

It is impossible for either allele to become fixed in the population   

C They are both equally likely to become fixed in the population, it is purely random

D The recessive allele, a

0 0
Add a comment Improve this question Transcribed image text
Answer #1

Answer C is correct.

Dominant allele (A) and recessive allele (a) both equally likely to become fixed in the population, it is purely random. When there is no lethal effect due to homozygous dominant alleles or homozygous recessive alleles, both the alleles can be fixed randomly in the population over a time period.

Add a comment
Know the answer?
Add Answer to:
A dominant allele (A) is found at equal frequency with a recessive allele (a) in a...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • In a population of Mendel's garden peas, the frequency of the dominant A (purple flower) allele...

    In a population of Mendel's garden peas, the frequency of the dominant A (purple flower) allele is 80%. Letp represent the frequency of the A allele and q represent the frequency of the a allele. Assuming that the population is in Hardy-Weinberg equilibrium, what are the genotype frequencies? A. 16% AA, 40 % Aa, 44 % aa B. 80% AA, 10 % Aa, 10 % aa C. 50 % AA , 25 % As , 25 % aa * E....

  • Hardy Weinberg assignment P + Q = 1 In which P represents frequency of dominant allele...

    Hardy Weinberg assignment P + Q = 1 In which P represents frequency of dominant allele and Q represents frequency of the recessive allele P2 + 2PQ + Q2 =1 P2 represents frequency of homozygous dominant 2PQ represents frequency of heterozygous Q2 represents frequency of homozygous recessive Consider a population of beetles on an island. There are 1000 beetles and they have different colored wings. Black wings are dominant over silver wings. Calculate the allele and the genotypic frequencies in...

  • In a population of mice a particular locus has two alleles A1 (dominant) and A2 (recessive)....

    In a population of mice a particular locus has two alleles A1 (dominant) and A2 (recessive). There are 126 A1A1, 167 A1A2 and 88 A2A2. Is this population in Hardy-Weinberg equilibrium (3 pts)? In a population of Gragons, there are 3151 A1A1, 1678 A1A2 and 2014 A2A2 individuals. If the environment changes so that the homozygous recessive genotype suffers a reduction of fitness where its fitness is now 0.73, but the other genotypes are unaffected, what will be the frequency...

  • Assortment of genes on same chromosome In the fruit fly Drosophila, there is a dominant gene...

    Assortment of genes on same chromosome In the fruit fly Drosophila, there is a dominant gene for normal wings and its recessive allele for vestigial wings. At another gene locus. there is a dominant gene for red eyes and its recessive allele for purple eyes. A female that was heterozygous at both gene loci was mated with a male that is homozygous for both recessive alleles. Knowing this, complete the sentences with the correct terms. 94% crossing over independent assortment...

  • Case B: In this population, the frequency of the dominant allele, B, is 0.5 and the...

    Case B: In this population, the frequency of the dominant allele, B, is 0.5 and the frequency of the recessive allele, b, is 0.5. However, in this situation any individual who is born with the dominant trait has a 50 % chance of not surviving to reproductive age. Assuming that mating is still random, what will happen to the allele frequencies (p and q) after 5 generations? (le. Will one allele increase or decrease?) Prediction (1 mark): Reason (2 marks):...

  • coat color is due to a dominant allele (W), black coat color to its recessive allele...

    coat color is due to a dominant allele (W), black coat color to its recessive allele unnett squares for each of the following crosses and answer the questions. 2. In sheep, white tw). Construct P d frequency fo a. A black sheep crossed to a black sheep. List the genotypes, phenotypes, an each of the offspring b. A white sheep, the product of a black x white cross, is crossed with a black sheep. List the genotypes, phenotypes, and frequency...

  • In horses, the color black is due to a dominant allele (B) and chestnut color is...

    In horses, the color black is due to a dominant allele (B) and chestnut color is due to a recessive allele (b) of the same gene. The trotting gate is due to a dominant allele (T) and the pacing gate is due to the recessive allele (t) of the same gene. These two genes are located on different chromosomes. A homozygous black pacer horse mates with a homozygous, chestnut trotting horse and they have a daughter. a. What are the...

  • 1. Fixation of Dominant Alleles Start with a population that has a gene with two alleles (A and a...

    1. Fixation of Dominant Alleles Start with a population that has a gene with two alleles (A and a) with classical Mendelian dominance that are at equal frequency (p0.5. q 0.5). Assume this first generation is at hardy Weinberg equilibrium. Calculate the genotype frequencies AA- a. Aa b. Now assume some environmental change that makes the recessive phenotype completely unfit (fitness- 0). Calculate the allele frequencies and genotype frequencies in the second generation. (Hint: Your calculations might be easier if...

  • In the case of directional selection, if the advantageous allele (b) is recessive and a less...

    In the case of directional selection, if the advantageous allele (b) is recessive and a less advantageous allele (B) is dominant: A. b will be lost in the population because the dominant allele will increase in frequency by natural selection B. b will increase in frequency at the same speed as if it was a dominant advantageous allele, because what matters is the coefficient of selection and not if the allele is dominant or recessive C. b will increase in...

  • Case B: In this population, the frequency of the dominant allele, B, is 0.5 and the...

    Case B: In this population, the frequency of the dominant allele, B, is 0.5 and the frequency of the recessive allele, b, is 0.5. However, in this situation any individual who is born with the dominant trait has a 50 % chance of not surviving to reproductive age. Assuming that mating is still random, what will happen to the allele frequencies (p and q) after 5 generations? (le. Will one allele increase or decrease?) Prediction (1 mark): Reason (2 marks):

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT