Question

Question #5 [20 points) R(S) - --- G(s) G(s) - G(S) = Ks (s + 1)(s + 2) a) Find the root locus for the above system. ) For wh
B. Determine the gain and phase margins of the system. GM = _ PM = C. What is wgc(gain cross over frequency) ge D. What is ap
0 0
Add a comment Improve this question Transcribed image text
Request Professional Answer

Request Answer!

We need at least 10 more requests to produce the answer.

0 / 10 have requested this problem solution

The more requests, the faster the answer.

Request! (Login Required)


All students who have requested the answer will be notified once they are available.
Know the answer?
Add Answer to:
Question #5 [20 points) R(S) - --- G(s) G(s) - G(S) = Ks (s + 1)(s...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Similar Homework Help Questions
  • Let G,()+3s+5) , K-1 and Ge 1 I Determine the loop transfer function L(s)-KG.G. Use 'margin' command in matlab to generate the Bode Plot for L(s). (a) What are its gain and phase margins (the...

    Let G,()+3s+5) , K-1 and Ge 1 I Determine the loop transfer function L(s)-KG.G. Use 'margin' command in matlab to generate the Bode Plot for L(s). (a) What are its gain and phase margins (these should be available in the plots). (b) Convert the gain margin in dB to absolute value. (c) For what value of the gain K would the closed loop system become marginally stable? (d) Show that, for this value of K, the closed loop system does...

  • Problem 3. (15 points) Consider the feedback system in Figure 3, where G(s)1 (s -1)3 Ge(s)...

    Problem 3. (15 points) Consider the feedback system in Figure 3, where G(s)1 (s -1)3 Ge(s) G(s) Figure 3: Problem 3 1. Let the compensator be given by a pure gain, ie, Ge(s)-K, K 0 (a) Draw the root locus of the compensated system (b) Is it possible to stabilize the systems by selecting K appropriately? If so, find the range for K such that the closed-loop system is BIBO stable. If not, explain. 2. This time, let the compensator...

  • 3. (28 pts.) The unity feedback system with K(5+3) G(s) = (s + 1)(s + 4)(s...

    3. (28 pts.) The unity feedback system with K(5+3) G(s) = (s + 1)(s + 4)(s + 10) is operating with 12% overshoot ({=0.56). (a) the root locus plot is below, find the settling time (b) find ko (c) using frequency response techniques, design a lead compensator that will yield a twofold improvement in K, and a twofold reduction in settling time while keeping the overshoot at 12%; the Bode plot is below using the margin command and using the...

  • G(s) Y(s) s+2 1. (25 points) A system has G(S) = 21ac11: (a) Find the two...

    G(s) Y(s) s+2 1. (25 points) A system has G(S) = 21ac11: (a) Find the two points that define each real-axis segment of the root locus. (b) Find the maximum value of the gain K for the closed-loop to be stable. If there are root loci that cross the imaginary axis, also find the corresponding frequency of the closed-loop roots that lie on the imaginary axis. (c) Find the angle of departure from the complex poles. (d) Find the location...

  • Question 1 (60 points) Consider the following block diagram where G(s)- Controller R(s) G(s) (a) Sketch the root locus assuming a proportional controller is used. [25 points] (b) Design specifica...

    Question 1 (60 points) Consider the following block diagram where G(s)- Controller R(s) G(s) (a) Sketch the root locus assuming a proportional controller is used. [25 points] (b) Design specifications require a closed-loop pole at (-3+j1). Design a lead compensator to make sure the root locus goes through this point. For the design, pick the pole of the compensator at-23 and analytically find its zero. (Hint: Lead compensator transfer function will be Ge (s)$+23 First plot the poles and zeros...

  • You may prepare your answer in softcopy, print out and submit or use hardcopy approach. Put...

    You may prepare your answer in softcopy, print out and submit or use hardcopy approach. Put all your MATLAB codes and Simulink Diagram under the appendix. The system below is to be compensated to achieve a phase margin of 50 degrees. s +3 x(t) 5+2s+ 2s E-KH. yệt) Design gain and phase-lead compensator to achieve the desired PM of 45 degrees. +PART A: Uncompensated system analysis % created by Fakhera 2020 Determine the uncompensated PM and GM s=tf('s'); g= (5+3)/...

  • Q.2 (10 marks) Consider the system shown in Fig.2 with K(5-3) H(s) = (s – 4)...

    Q.2 (10 marks) Consider the system shown in Fig.2 with K(5-3) H(s) = (s – 4) (s+1)(s+2) (a) Sketch the root locus of the closed-loop system as the gain K varies from zero to infinity. (b) Based on the root locus, determine the range of K such that the system is stable and under-damped. (c) Determine the K value such that the closed-loop system is over-damped and stable. (d) Use MATLAB draw the root locus and confirm the root locus...

  • Question 2 System Stability in the s-Domain and in the Frequency Domain: Bode Plots, Root Locus...

    Question 2 System Stability in the s-Domain and in the Frequency Domain: Bode Plots, Root Locus Plots and Routh- Hurwitz Criterion ofStability A unit feedback control system is to be stabilized using a Proportional Controller, as shown in Figure Q2.1. Proportional Controller Process The process transfer function is described as follows: Y(s) G(s) s2 +4s 100 s3 +4s2 5s 2 Figure Q2.1 Your task is to investigate the stability of the closed loop system using s-domain analysis by finding: a)...

  • 1. The open loop system G()l be placed into a unity feedback system s2(s+1) as shown below. a. Sk...

    please answer all parts and show the related work. thank you! especially the matlab parts! 1. The open loop system G()l be placed into a unity feedback system s2(s+1) as shown below. a. Sketch the Root Locus of G(s) by hand and compare your results with Matlab. Include your sketch and the Matlab plot. b. This system is unstable for all positive values of K. Explain why. c. Show with a hand sketch and Matlab plot of the root locus...

  • 1. Write the MATLAB commands (tf.) and zpk (...)) that yield the following trans fer functions:...

    1. Write the MATLAB commands (tf.) and zpk (...)) that yield the following trans fer functions: ii) Hy=1+1+ ii) H3-3-*+-1 (s + 1)( -2) iv) H. - 3)(8 + 4) 2. Consider the feedback system: C(0) = K * G(s) Determine the values of K, a, and b of C(s) such that the dominant-closed loop poles are located at $12 = -1 j. Use the root locus method. Provide the locations of the dominant poles. You should include the root...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT