Question

An ideal reheat Rankine cycle with water as the working fluid operates the inlet of the...

An ideal reheat Rankine cycle with water as the working fluid operates the inlet of the high-pressure turbine at 8000 kPa and 450°C, the inlet of the low-pressure turbine at 300kPa and 500°C, and the condenser at 10 kPa. Determine the mass flow rate through the boiler needed for this system to produce a net 5000 kW of power and the thermal efficiency of the cycle.

0 0
Add a comment Improve this question Transcribed image text
Answer #1

Pg Noool 4 온 Ty=500°c T = 450°C 8 MPa 300 kPa 3 Lokpa 6 as is shown for the ideal Reheat diagram The Tas Ranking de using stofg No.03 At NY to upa, 2.15 kg/ng.k But sa 8.33 kJ/g. a. Hence the steam is entering Condenses at super treated state. from M

Add a comment
Know the answer?
Add Answer to:
An ideal reheat Rankine cycle with water as the working fluid operates the inlet of the...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • An ideal reheat Rankine cycle with water as the working fluid operates the boiler at 20,000...

    An ideal reheat Rankine cycle with water as the working fluid operates the boiler at 20,000 kPa, the reheater at 2000 kPa, and the condenser at 100 kPa. The temperature is 450 C at the entrance of the high-pressure and low-pressure turbines. The mass flow rate through the cycle is 1.74 kg/s. Determine the power used by pumps, the power produced by the cycle, the rate of heat transfer in the reheater, and the thermal efficiency of this system. Use...

  • Tutorial Questions 1 1. Water is the working fluid in an ideal Rankine cycle. The condenser...

    Tutorial Questions 1.1. Water is the working fluid in an ideal Rankine cycle. The condenser pressure is kPa, and saturated vapor enters the turbine at 10 MPa. Determine the heat transfer rates, in kJ per kg of steam flowing, for the working fluid passing through the boiler and condenser and calculate the thermal efficiency.2. Water is the working fluid in an ideal Rankine cycle. Saturated vapor enters the turbine at 16 MPa, and the condenser pressure is 8 kPa ....

  • A simple Rankine cycle uses water as the working fluid. The boiler operates at 6000 kPa...

    A simple Rankine cycle uses water as the working fluid. The boiler operates at 6000 kPa and the condenser at 40 kPa. At the entrance to the turbine, the temperature is 380 °C. The isentropic efficiency of the turbine is 88 %, pressure and pump losses are negligible, and the water leaving the condenser is subcooled by 5.9 °C. The boiler is sized for a mass flow rate of 17 kg/s. Determine the following values. °C m®/kg 1 kJ/kg (1)...

  • 3) A simple Rankine cycle uses water as the working fluid. The boiler operates at 6000...

    3) A simple Rankine cycle uses water as the working fluid. The boiler operates at 6000 kPa and the condenser at 50 kPa. At the entrance to the turbine, the temperature is 450°C. The isentropic efficiency of the turbine is 94 percent, pressure and pump losses are negligible, and the water leaving the condenser is subcooled by 6.3°C. The boiler is sized for a mass flow rate of 20 kg/s. Determine the rate at which heat is added in the...

  • Consider a power plant with water as working fluid that operates on a reheat Rankine cycle...

    Consider a power plant with water as working fluid that operates on a reheat Rankine cycle and has a net power output of 75 MW. Steam enters the high-pressure turbine at 10 MPa and 400°C and the low-pressure turbine at 1 MPa and 400°C. Water leaves the condenser as a saturated liquid at a pressure of 100 kPa. The isentropic efficiency of the high-pressure turbine is 85% and the low-pressure turbine in 100%. The pump has an isentropic efficiency of...

  • Consider an ideal Rankine cycle with reheat based on water as the working fluid. The steam...

    Consider an ideal Rankine cycle with reheat based on water as the working fluid. The steam at the high-pressure turbine inlet is at 10 MPa and 700 K and it is saturated steam at the outlet The steam is reheated to 675 K before it enters the low pressure turbine. The pressure is reduced to where the steam is let down to 150 kPa The mass flow rate is 60 kg/s, 1. Draw the T-s diagram; [5 2. State all...

  • A simple ideal Rankine cycle with water as the working fluid operates between the pressure limits...

    A simple ideal Rankine cycle with water as the working fluid operates between the pressure limits of 15 MPa in the boiler and 100 kPa in the condenser. Saturated steam enters the turbine. Determine the work produced by the turbine, the heat transferred in the boiler, and thermal efficiency of the cycle. As part of your solution, sketch a simplified diagram of the cycle, labelling each component, indicating where heat and work flows into or out of the system, and...

  • 3. (10 pts) A simple Rankine cycle operates with water as the working fluid between the...

    3. (10 pts) A simple Rankine cycle operates with water as the working fluid between the pressures of 4 MPa and 20 kPa. The fluid leaves the boiler at 550°C, the turbine efficiency is 89% and the fluid exits the condenser as saturated liquid. The flow rate is 81.5 kg/s and the pump efficiency is 52%. Determine: a. The net power output, in kW. b. The rate of heat input in the boiler, in kW. C. The rate of heat...

  • Water is the working fluid in an ideal Rankine cycle with reheat. Superheated vapor enters...

    Water is the working fluid in an ideal Rankine cycle with reheat. Superheated vapor enters the turbine at 8 MPa, 480℃, and the condenser pressure is 8 kPa. Steam expands through the first stage turbine to 700 kPa and then is reheated to 480℃. Assumptions: see problem 1 . Determine for the cycle(a) the rate of heat addition, in kJ per kg to the working fluid in the steam generator.(b) the thermal efficiency.(c) the rate of heat transfer from the...

  • 6. Water is the working fluid in an ideal Rankine cycle. Saturated vapor enters the turbine...

    6. Water is the working fluid in an ideal Rankine cycle. Saturated vapor enters the turbine at 16 MPa, and the condenser pressure is 8 kPa. The mass flow rate of steam entering the turbine is 120 kg/s. Determine: (a) Draw the ideal Rankine cycle in T-S diagram (b) The net power developed, in kW. (b) The rate of heat transfer to the steam passing through the boiler, in kW. (c) The thermal efficiency. 2 P (kPa) 16000 16000 TC)...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT