Question

4.[1pt] A block of mass m - 6.10 kg is released from rest at a height of H- 10.00 m on a curved frictionless ramp. At the foot of the ramp is a sring whose spring constant is k -455.0 N/m. What is the maximum compression of the spring, x? Answer: Submit All Answers 5.[lpt] After the spring reaches its maximum compression, it pushes the block backwards. What is the maximum height reached by the block? Answer: Submit All Answers

0 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
4.[1pt] A block of mass m - 6.10 kg is released from rest at a height...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A block of mass m1 = 5.0 kg is released from a height of 5.0 m...

    A block of mass m1 = 5.0 kg is released from a height of 5.0 m (point A) down a smooth, curved ramp. It makes an elastc headdon collision with a block of mass m2 = 10 kg that is initally at rest. (a) What is the maximum height reached by m1 afer the collision? (b) Afer the collision, m2 glides smoothly untl it hits a rough patch and eventually comes to a stop. What is the length of the...

  • 3. An 8.50 kg block is held at a height H1 = 7.50 m. The block...

    3. An 8.50 kg block is held at a height H1 = 7.50 m. The block is released and lands on a spring whose initial height before the collision is H2 = 3.00 m. The spring has a spring constant of 1.50x103 N/m. (Ignore the size of the block.) a. Use Conservation of Energy to find the speed of the block just before it touches the spring. (5) b. Find the maximum compression of the spring. (20) c. Find the...

  • A block of mass m = 850 g is released from rest and slides down a...

    A block of mass m = 850 g is released from rest and slides down a frictionless track of height 32.7 cm. At the bottom of the track, the block slides freely along a horizontal plane until it hits a spring with a constant of k = 50 N/m. What is the maximum compression of the spring that occurs?

  • A 2.00kg block initially at rest, is released from point A, as shown. The curved portion...

    A 2.00kg block initially at rest, is released from point A, as shown. The curved portion of the track is frictionless. The horizontal track, including the portion under the spring, has a kinetic coefficient of friction = 0.1. (a) What is the maximum compression if the spring? {take k=30N/m} (b) where does the block ultimately comes to rest? 4.A 2.00kg block initially at rest, is released from point A, as shown. The curved portion of the track is frictionless. The...

  • A 19.0-kg block is released from rest on a frictionless 35.0 incline. Below the block is...

    A 19.0-kg block is released from rest on a frictionless 35.0 incline. Below the block is a spring that can be compressed 3.60 cm by a force of 270 N. After the block is released, the block slides down the frictionless ramp and compresses the spring by 5.50 cm. How fast is the block traveling the moment it reaches the spring?

  • As shown in the figure below, a 2.25-kg block is released from rest on a ramp of height h.

    As shown in the figure below, a 2.25-kg block is released from rest on a ramp of height h. When the block is released, it slides without friction to the bottom of the ramp, and then continues across a surface that is frictionless except for a rough patch of width 15.0 cm that has a coefficient of kinetic friction μk = 0.520. Find h such that the block's speed after crossing the rough patch is 4.20 m/s. An object with a...

  • 1 45 kg is released from rest from the top of a rough ramp, with Mass...

    1 45 kg is released from rest from the top of a rough ramp, with Mass - coefficient of kinetic friction 0.25 between the block and the incline, of height 3.2 m and length d 5.5 m. At the bottom of the ramp, the mass slides on a horizontal, frictionless surface until it compresses a spring of spring constant k 2. 110 N/m. a. Calculate the speed of the mass at the bottom of the ramp? b. How far does...

  • A 700 g block is released from rest at height h0 above a vertical spring with...

    A 700 g block is released from rest at height h0 above a vertical spring with spring constant k = 480 N/m and negligible mass. The block sticks to the spring and momentarily stops after compressing the spring 19.0 cm. (a) How much work is done by the block on the spring?   8.7 J (b) How much work is done by the spring on the block? -8.7 J (c) What is the value of h0? 1.07 m (d) If the...

  • 4. (15 pts) A small block with a mass 'm', is released from rest at an...

    4. (15 pts) A small block with a mass 'm', is released from rest at an initial height 'h'. the mass slides down a ramp and then through a 'dip' with a given radius of curvature '. at the lowest point of the curve, the mass as a velocity of vc (velocity at curve). The mass continues back up and eventually slides over a friction patch of length 'd' when it eventually reaches an uncompressed spring. The mass compresses the...

  • A 700 g block is released from rest at height ho above a vertical spring with...

    A 700 g block is released from rest at height ho above a vertical spring with spring constant k = 405 N/m and negligible mass. The block sticks to the spring and momentarily stops after compressing the spring 17.5 cm. (a) How much work is done by the block on the spring? (b) How much work is done by the spring on the block? (c) What is the value of ho? (d) If the block were released from height 2.00ho...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
Active Questions
ADVERTISEMENT