Question

A piece of glass has a temperature of 90.0 °C. Liquid that has a temperature of...

A piece of glass has a temperature of 90.0 °C. Liquid that has a temperature of 32.0 °C is poured over the glass, completely covering it, and the temperature at equilibrium is 55.0 °C. The mass of the glass and the liquid is the same. Ignoring the container that holds the glass and liquid and assuming that the heat lost to or gained from the surroundings is negligible, determine the specific heat capacity of the liquid.

0 0
Add a comment Improve this question Transcribed image text
Answer #1

:  By Q(lost) by glass = Q(gained) by liquid
=>m x c(glass) x delta t*C = m x c(liquid) x delta t*C
=>840 x (90-55) = c(liquid) x (55-32)
=>c(liquid) = 1278.26 J/(kg·*C)

Add a comment
Know the answer?
Add Answer to:
A piece of glass has a temperature of 90.0 °C. Liquid that has a temperature of...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A 0.220-kg piece of aluminum that has a temperature of -191 °C is added to 1.5...

    A 0.220-kg piece of aluminum that has a temperature of -191 °C is added to 1.5 kg of water that has a temperature of 2.4 °C. At equilibrium the temperature is 0 °C. Ignoring the container and assuming that the heat exchanged with the surroundings is negligible, determine the mass of water that has been frozen into ice.

  • Chapter 12, Problem 088 A 0.290-kg piece of aluminum that has a temperature of -190 °C...

    Chapter 12, Problem 088 A 0.290-kg piece of aluminum that has a temperature of -190 °C is added to 1.2 kg of water that has a temperature of 3.1 °C. At equilibrium the temperature is 0 °C. Ignoring the container and assuming that the heat exchanged with the surroundings is negligible, determine the mass of water that has been frozen into ice. Aluminum Ice Equilibrium (0.0?) Initial state Number Units the tolerance is +/-390 Click if you would like to...

  • The temperature of 2.26 kg of water is 34 °C. To cool the water, ice at...

    The temperature of 2.26 kg of water is 34 °C. To cool the water, ice at 0 °C is added to it. The desired final temperature of the water is 11 °C. The latent heat of fusion for water is 33.5 × 104 J/kg, and the specific heat capacity of water is 4186 J/(kg·C°). Ignoring the container and any heat lost or gained to or from the surroundings, determine how much mass m of ice should be added.

  • The temperature of 2.7 kg of water is 34° C. To cool the water, ice at...

    The temperature of 2.7 kg of water is 34° C. To cool the water, ice at 0° C is added to it. The desired final temperature of the water is 11° C. The latent heat of fusion for water is 333.5 × 103 J/kg, and the specific heat capacity of water is 4186 J/(kg·C°). Ignoring the container and any heat lost or gained to or from the surroundings, determine how much mass m of ice should be added. m =  kg

  • 6. A 0.500kg glass (c=840 J/kg°C) containing 1.00L of water (at 20.0°C) is filled with 0.100kg...

    6. A 0.500kg glass (c=840 J/kg°C) containing 1.00L of water (at 20.0°C) is filled with 0.100kg of ice (initially at -5.0°C). a. What is the mass of the liquid water initially in the glass? b. What is the equilibrium temperature of the water and glass when all of the ice has melted? Ignore any heat gained from or lost to the surroundings. C. A person then drinks all of the water in the glass. How much heat is gained by...

  • Any formulas Shown along with work would be greatly appreciated! 7. A 0.500 kg glass (C=840...

    Any formulas Shown along with work would be greatly appreciated! 7. A 0.500 kg glass (C=840 J/kg°C) containing 1.00 L of water (at 20.0°C) is filled with 0.100 kg of ice (at -5.0°C). The specific heat of ice is 2108J/kg K a. What is the mass of the liquid water initially in the glass? b. What is the equilibrium temperature of the water and glass when all of the ice has melted? Ignore any heat gained from or lost to...

  • 1.) 40 g of liquid water at 30 C and 20 g of ice at 0...

    1.) 40 g of liquid water at 30 C and 20 g of ice at 0 C are mixed together in an insulated container. Assuming there is not heat lost to surroundings, what will the temperature be when the mixture has reached thermal equilibrium. (show your work) 2.)20 g of ice at 0 C and 10 g of steam at 100 C are mixed together in an insulated container. Assuming there is not heat lost to surroundings, what will the...

  • 2. A construction worker drops a hot 100-g iron rivet at 500 °C into a bucket...

    2. A construction worker drops a hot 100-g iron rivet at 500 °C into a bucket containing 500 g of mercury at 20°C. Assuming that no heat is lost to the surroundings or the bucket, what is the final temperature of the rivet and mercury? 3. An unknown liquid of mass 400 g at a temperature of 80°C is poured into 400 g of water at 40°C. The final equilibrium temperature of the mixture is 49°C. What is the specific...

  • A piece of solid cadmium weighing 37.6 g at a temperature of 311 °C is placed...

    A piece of solid cadmium weighing 37.6 g at a temperature of 311 °C is placed in 376 g of liquid cadmium at a temperature of 370 °C. After a while, the solid melts and a completely liquid sample remains. Calculate the temperature after thermal equilibrium is reached, assuming no heat loss to the surroundings. The enthalpy of fusion of solid cadmium is ΔHfus = 6.11 kJ/mol at its melting point of 321 °C, and the molar heat capacities for...

  • A piece of solid lead weighing 32.6 g at a temperature of 311 °C is placed...

    A piece of solid lead weighing 32.6 g at a temperature of 311 °C is placed in 326 g of liquid lead at a temperature of 367 °C. After a while, the solid melts and a completely liquid sample remains. Calculate the temperature after thermal equilibrium is reached, assuming no heat loss to the surroundings. The enthalpy of fusion of solid lead is ΔHfus = 4.77 kJ/mol at its melting point of 328 °C, and the molar heat capacities for...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT