Question

Find efficiency of the cycle

In the Rankine cycle for a steam power plant the turbine entry and exit enthalpies are 2803 kJ/kg and 1800 kJ/kg, respectively. The enthalpies of water at pump entry and exit are 121 kJ/kg and 124 kJ/kg respectively. The specific steam consumption (in kg/kWh) of the cycle is

1 0
Add a comment Improve this question Transcribed image text
Answer #1
Turbine work = 2803 - 1800 = 1003 KJ/kg Compressor work = 124-121= 3kJ/kg Net work = 1003-3=1000 kJ/kg SFC = 3600/1000= 3.6 kg/kWh
source: Calculations
answered by: Khaled_bag
Add a comment
Know the answer?
Add Answer to:
Find efficiency of the cycle
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Rankine

    In a Rankine cycle, the enthalpies at turbineentry and outlet are 3159 kJ/kg and 2187 kJ/kg.respectively. If the specific pump work is2 kJ/kg, the specific steam consumption (inkg/kW-h) of the cycle based on net output is

  • Tor steam power prants 4 marks D) A steam power plant is to be designed using the Rankine cycle with superheat. The...

    Tor steam power prants 4 marks D) A steam power plant is to be designed using the Rankine cycle with superheat. The steam must enter; the turbine at pressure (P) and temperature (T), and the turbine steam exit pressure must be 0.05 bars. In order to produce 12 MW, a steam mass floW rate of 8.91 kg/s is to be used and the dryness fraction at turbine exit must be 0.9. Assuming the Rankine cycle to be ideal and neglecting...

  • A combined cycle gas turbine/vapor power plant uses the turbine exhaust as the energy source for...

    A combined cycle gas turbine/vapor power plant uses the turbine exhaust as the energy source for the boiler. Each power system uses a single turbine. The gas power system is modeled as an ideal air-standard Brayton cycle. The vapor power system is modeled as an ideal Rankine cycle. Given specific operating conditions determine the temperature and pressure at each state, the rate of heat transfer in the boiler, the power output of each turbine, and the overall efficiency. --Given Values--...

  • A combined cycle gas turbine / vapor power plant uses the turbine exhaust as the energy...

    A combined cycle gas turbine / vapor power plant uses the turbine exhaust as the energy source for the boiler. Each power system uses a single turbine. The gas power system is modeled as an ideal air-standard Brayton cycle. The vapor power system is modeled as an ideal Rankine cycle. Given specific operating conditions determine the temperature and pressure at each state, the rate of heat transfer in the boiler, the power output of each turbine, and the overall efficiency....

  • A Rankine Cycle based steam power plant produces 200 MW of power. Steam exits the boiler...

    A Rankine Cycle based steam power plant produces 200 MW of power. Steam exits the boiler at 3 MPa and 500° C. The turbine exit is at 40 kPa. Isentropic efficiencies of the turbine and pump are 75% and 70% respectively. Show the cycle on a T-s diagram Calculate the mass flow rate of steam Determine the heat transfer rates in the boiler and condenser in MW Determine the cycle efficiency Determine the mass flow rate of the condenser cooling...

  • 3. (40 pts) A steam power plant based on the Rankine cycle, shown in the below,...

    3. (40 pts) A steam power plant based on the Rankine cycle, shown in the below, operates to develop net cycle power. Saturated vapor at 8 bar enters the turbine where it expands to the condenser pressure of 1 bar. Water liquid exits the condenser 30 °C and 1 bar and it is pumped to the boiler pressure of 8 bar. Isentropic efficiencies of the turbine and pump are 80% and 60%. Assume kinetic and potential energies are negligible at...

  • a steam (H2O) power plant using an ideal Rankine cycle has intel of pump at 50c...

    a steam (H2O) power plant using an ideal Rankine cycle has intel of pump at 50c and inlet at 3MPa and 500c. 1-the temperature at turbine exit is? 2-the quality at condenser inlet? 3-the work input for pump is? 4-the specific entropy(in kj/kg.k) at boiler inlet is?

  • Problem 5-Irreversible Power cycle A simple power plant cycle has saturated liquid water from a c...

    Problem 5-Irreversible Power cycle A simple power plant cycle has saturated liquid water from a condenser at 100 kPa pumped into a boiler operating at 1.0 MPa. The steam leaves the boiler at 350 °C and is expanded through a turbine with the exit stream having a quality between 0 and 1. If the turbine is 80% efficient and the pump is 90% efficient in this Rankine cycle, what is the overall efficiency of the power cycle? Problem 5-Irreversible Power...

  • Question 16 A steam power plant operates on a Rankine cycle. The steam enters the turbine...

    Question 16 A steam power plant operates on a Rankine cycle. The steam enters the turbine at 10,000 kPa and 580'C. It is condensed in the condenser at 6 kPa. The isentropic efficiencies of the pump and turbine are 95% and 94% respectively. Determine the following Properties: h1 = 151.53 kJ/kg, n 1-0.0010064 m g . h3 - 3573.7 kJ/kg, X ds = 0.8097 hg. 4 2416.62 kJ/kg a. Work input to the pump in (kJ/kg) b. Heat added in...

  • A proposed steam power plant design consists of an ideal Rankine cycle with reheat and regeneration....

    A proposed steam power plant design consists of an ideal Rankine cycle with reheat and regeneration. Steam enters Turbine 1 at Pl and T1 at the rate of mi and exits at P2. A fraction () of the steam exiting Turbine 1 is diverted to an open feedwater heater while the remainder is reheated to T3 before entering Turbine 2. The condenser operates at P4. Saturated liquid exits the condenser and is fed to Pump 1. The outlet of Pump...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT