Question

Steam flows steadily through an adiabatic turbine. (c) BY-NC- Niel Crews, 2013 The inlet conditions of the steam are: pressur

0 0
Add a comment Improve this question Transcribed image text
Answer #1

Inlet Condition PIE16MP4 TIE 45c Vi = gomis P2 = lokpa x3 0.92 V2 = somis Tas diagram for given condition part ② Saturation T

Add a comment
Know the answer?
Add Answer to:
Steam flows steadily through an adiabatic turbine. (c) BY-NC- Niel Crews, 2013 The inlet conditions of...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Problem 3 Steam flows steadily through an adiabatic turbine. The inlet conditions of the steam are...

    Problem 3 Steam flows steadily through an adiabatic turbine. The inlet conditions of the steam are 10 MPa, 400 C, and 80 m/s, and the exit conditions are 10 kPa, 92 percent quality, and 50 m/s. The mass flow rate of the steam is 12 kg/s. Determine (a) the change in kinetic energy, (b) the power output, and (c) the turbine inlet area. Pi = 10 MPa 7, = 400 °C V1 80 m/s No STEAM 3 12 kg/s ▼Sh...

  • Steam flows steadily through an adiabatic turbine

    Steam flows steadily through an adiabatic turbine. The inlet conditions of the steam are 4 MPa, 500°C, and 80 m/s, and the exit conditions are 30 kPa, 92 percent quality, and 50 m/s. The mass flow rate of the steam is 12 kg/s. Determine a. (3) Change in kinetic energy (-23.4 kJ) b. (4) Power output (12.12 MW) c. (3) Turbine inlet area (0.012966 m2)

  • Air enters an adiabatic nozzle under the following conditions: pressure = 900 kPa temperature = 560°C...

    Air enters an adiabatic nozzle under the following conditions: pressure = 900 kPa temperature = 560°C velocity = 2.7 m/s The air leaves the nozzle at 850 kPa and 480 °C. What is the velocity at the exit of the nozzle? Assume the specific heat is constant and can be taken at the average temperature between the inlet and outlet. air (c) EYES Niel Crews, 2013

  • An adiabatic turbine uses steam as the medium and it operates steadily at pressure of 6...

    An adiabatic turbine uses steam as the medium and it operates steadily at pressure of 6 Mpa, temperature of 600 oC and velocity inlet of 53 m/ The steam expands in the turbine and exits at pressure of 10 kPa and velocity of 82 m/s. During the process, the power produced by the turbine is 5.4 Mw and the isentropic efficiency is 50 % Format: 80.5 Format:73498 Format:4.8577 Format 0.88 Format: 7547.8 Format : 9.5 Format: 34366 Format : 6588...

  • Steam enters an adiabatic turbine steadily at 3 MPa and 450°C at a rate of 8...

    Steam enters an adiabatic turbine steadily at 3 MPa and 450°C at a rate of 8 kg/s and exits at 0.2 MPa and 150*C. If the surrounding air is at 25°C and 100 kPa, determine: a. The specific flow exergy of steam at turbine entrance b. The specific flow exergy of steam at turbine exit c. The rate of flow exergy change in the process.

  • Steam enters an adiabatic turbine steadily at 7 MPa, 500 °C, and 45 m/s

    Steam enters an adiabatic turbine steadily at 7 MPa, 500 °C, and 45 m/s, and leaves at 100 kPa and 75 m/s. If the power output of the turbine is 5 MW and the isentropic efficiency is 77 percent, determine: A. the mass flow rate of steam through the turbine, B. the temperature at the turbine exit, and C. the rate of entropy generation during this process.

  • 5-30 Air enters an adiabatic nozzle steadily at 300 kPa, 200°C, and 30 m/s and leaves...

    5-30 Air enters an adiabatic nozzle steadily at 300 kPa, 200°C, and 30 m/s and leaves at 100 kPa and 180 m/s. The inlet area of the nozzle is 80 cm². Determine (a) the mass flow rate through the nozzle, (b) the exit temperature of the air, and (c) the exit area of the nozzle. Answers: (a) 0.5304 kg/s, (b) 184.6°C, (c) 38.7 cm P = 300 kPa T, = 200°C Vi = 30 m/s A = 80 cm AIR...

  • thermodynamics Thermodynamics P5.31: - Steam at 3 MPa and 400°C enters an adiabatic nozle steadily with...

    thermodynamics Thermodynamics P5.31: - Steam at 3 MPa and 400°C enters an adiabatic nozle steadily with a velocity of 40 m/s and leaves at 2.5 MPa and 300 m/s. Determine (a) the exit temperature (b) the ratio of the inlet to exit area A1/A2. P5.64:- Refrigerant-134a at 800 kPa and 25°C is throttled to a temperature of 220°C. Determine the pressure and the internal energy of the refrigerant at the final state P1-0.8 MPa

  • Steam expands through a well-insulated turbine from inlet conditions 300c and 4 Mpa with negligible velocity...

    Steam expands through a well-insulated turbine from inlet conditions 300c and 4 Mpa with negligible velocity to exit conditions 40m/s and 0.075Mpa. The turbine is operating at steady state and has an exit diameter of 0.6Mpa. Select two different values of exit quality in the range of 0.2 to 0.5 and subsequently plot the power generated by the turbine in kw Question 3 Steam expands through a well-insulated turbine from inlet conditions 300°C and 4 MPa with negligible velocity to...

  • 4-1-30 [WX] An adiabatic steam nozzle operates steadily under the following conditions. Inlet: superheated vapor, p1...

    4-1-30 [WX] An adiabatic steam nozzle operates steadily under the following conditions. Inlet: superheated vapor, p1 = 1 MPa, T1 = 300°C, A1 78.54 cm2; Exit: saturated vapor, p2 = 100 kPa. Determine (a) the exit velocity (V2) in m/s, (b) the rate of entropy Solution] [Discuss] generation (Šgen) in kW/K. The mass flow rate (m is 1 kg/s.

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT