Question

Please answer all parts or dont answer any of them.

Analyzing Models step(sys,t) impulse(sys,t) Isim(sys,u,t) Time response for step input Time response for impulse input Time r

0 0
Add a comment Improve this question Transcribed image text
Answer #1

Ansuen Page 2. step (sys, t) 3. impulse (Sys, t) L4to.D3 sim Sys, u,t)Step ResponseImpulse RespOnse

Add a comment
Know the answer?
Add Answer to:
Please answer all parts or dont answer any of them. Analyzing Models step(sys,t) impulse(sys,t) Isim(sys,u,t) Time...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • 1. Given the impulse response, h[n duration 50 samples. (-0.9)"u[n, find the step response for a step input of h-(0...

    1. Given the impulse response, h[n duration 50 samples. (-0.9)"u[n, find the step response for a step input of h-(0.9)-10:491 -ones (1,50) s- conv(u,h) 2. Plot h and u using stem function for 50 samples only stem(10:491, s(1:50) 1. Given a system described by the following difference equation: yIn] 1143yn 1 0.4128y[n -2 0.0675x[n0.1349xn 0.675x[n-2] Determine the output y in response to zero input and the initial conditionsy-11 and yl-2] 2 for 50 samples using the following commands: a -,-1.143,...

  • 2.6.1 Consider a causal continuous-time LTI system described by the differential equation u"(t) +...

    2.6.1-2.6.62.6.1 Consider a causal contimuous-time LTI system described by the differential equation$$ y^{\prime \prime}(t)+y(t)=x(t) $$(a) Find the transfer function \(H(s)\), its \(R O C\), and its poles.(b) Find the impulse response \(h(t)\).(c) Classify the system as stable/unstable.(d) Find the step response of the system.2.6.2 Given the impulse response of a continuous-time LTI system, find the transfer function \(H(s),\) the \(\mathrm{ROC}\) of \(H(s)\), and the poles of the system. Also find the differential equation describing each system.(a) \(h(t)=\sin (3 t) u(t)\)(b)...

  • A causal discrete-time LTI system is described by the equation

    A causal discrete-time LTI system is described by the equationwhere z is the input signal, and y the output signal y(n) = 1/3x(n) + 1/3x(n -1) + 1/3x(n - 2) (a) Sketch the impulse response of the system. (b) What is the dc gain of the system? (Find Hf(0).) (c) Sketch the output of the system when the input x(n) is the constant unity signal, x(n) = 1. (d) Sketch the output of the system when the input x(n) is the unit step signal, x(n)...

  • For a causal LTI discrete-time system described by the difference equation:

    For a causal LTI discrete-time system described by the difference equation: y[n] + y[n – 1] = x[n] a) Find the transfer function H(z).b) Find poles and zeros and then mark them on the z-plane (pole-zero plot). Is this system BIBO? c) Find its impulse response h[n]. d) Draw the z-domain block diagram (using the unit delay block z-1) of the discrete-time system. e) Find the output y[n] for input x[n] = 10 u[n] if all initial conditions are 0.

  • please help answer all the question and dont skip. Thank you! 1. Sketch the pole-zero diagram...

    please help answer all the question and dont skip. Thank you! 1. Sketch the pole-zero diagram for the following transfer function. Ensure you label the axes and the pole-zero locations. Assume a > b > 0. TF(s) = (s + a) s(s+b) 2. If the time constant of the lowest frequency pole in a system is 1 second, after approx- imately what period of time following turn-on could the system be considered to be in steady-state conditions? 3. The PID...

  • Please dont use Laplace or Fourier A linear time-invariant continuous-time system has the impulse response h(t)...

    Please dont use Laplace or Fourier A linear time-invariant continuous-time system has the impulse response h(t) = (sin(t) + e-t) u(t) (a) Compute the step response s(t) for all 20. (b) Compute the output response y(t) for all t > 0 when the input is u(t)-(t-2) with no initial energy in the system.

  • HI, PLEASE ANSWER ALL PARTS AND PLEASE SHOW ALL WORKINGS STEP BY STEP. THANK YOU. a)...

    HI, PLEASE ANSWER ALL PARTS AND PLEASE SHOW ALL WORKINGS STEP BY STEP. THANK YOU. a) Show from first principles that the Laplace transform of the function (0)=1, a 20 is f(3) = Make a note of any conditions imposed on the transform variable "s" to ensure the transform exists. (8 Marks) b) Find, using the appropriate theorem, the Laplace transform of a function f(t): f(t) = e-3t.sin(4t) OR Find the inverse Laplace transform of the following: ses f(s) =...

  • A linear time invariant system has an impulse response given by h[n] = 2(-0.5)" u[n] –...

    A linear time invariant system has an impulse response given by h[n] = 2(-0.5)" u[n] – 3(0.5)2º u[n] where u[n] is the unit step function. a) Find the z-domain transfer function H(2). b) Draw pole-zero plot of the system and indicate the region of convergence. c) is the system stable? Explain. d) is the system causal? Explain. e) Find the unit step response s[n] of the system, that is, the response to the unit step input. f) Provide a linear...

  • Please answer ALL parts to this digital signal processing question: Please show your working The figure below repr...

    Please answer ALL parts to this digital signal processing question: Please show your working The figure below represents a biquadratic digital filter in state-variable realisation form: Unit delay delay win-2 The values of the multipliers are as follows Answer the following questions, giving answers to four decimal places. PART 1 Determine the time domain equations that relate the input r[n] to the intermediate system variable ton and the output yin] to the intermediate system variable and complete the following: PART...

  • Problem 2 Wis) R(s) U(s) Gol (s) D a (s) E(s) H(s) Given a system as in the diagram above, use MATLAB to solve the problems: Assume we want the closed-loop system rise time to be t, 0.18 sec S + Z H(...

    Problem 2 Wis) R(s) U(s) Gol (s) D a (s) E(s) H(s) Given a system as in the diagram above, use MATLAB to solve the problems: Assume we want the closed-loop system rise time to be t, 0.18 sec S + Z H(s) 1 Gpl)s(s+)et s(s 1) s + p a) Assume W(s)-0. Draw the root locus of the system assuming compensator consists only of the adjustable gain parameter K, i.e. Dct (s) Determine the approximate range of values of...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT