Question

Calculate the displacement, momentum, and boundary layer thicknesses for air flowing over a 0.75 m long...

Calculate the displacement, momentum, and boundary layer thicknesses for air flowing over a 0.75 m long plate at 20 m/s. Assume that the air is at 295 K and Patm = 98,500Pa. Also, determine the skin friction coefficient and the drag force on one side of the plate.

0 0
Add a comment Improve this question Transcribed image text
Answer #1

ven Air te Pa 163 k2lm3 Since R-e75X1,-İt is to be tur bul ant. 8owndary e ticness (s): リs en Displ are menヒ ++ickness (s)·Mom en tum thickness, (θ (similey t previous 1Mt Cfavj - 0. 074 (Re )Vr

Add a comment
Know the answer?
Add Answer to:
Calculate the displacement, momentum, and boundary layer thicknesses for air flowing over a 0.75 m long...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Required information Air at 25°C and 1 atm is flowing over a long flat plate with...

    Required information Air at 25°C and 1 atm is flowing over a long flat plate with a velocity of 7 m/s. The density and kinematic viscosity of air at 1 atm and 25°C are p= 1.184 kg/m3 and V = 1.562x10-5 m2/s. Calculate the distance from the leading edge of the plate where the flow becomes turbulent. The distance from the leading edge of the plate is m. Required information Air at 25°C and 1 atm is flowing over a...

  • As shown in Fig. 1, the local velocity profile on a flat plate boundary layer is...

    As shown in Fig. 1, the local velocity profile on a flat plate boundary layer is uz(x, y)/V = an+bn', where 7 = y/8(x) is a non-dimensional vertical coordinate, 8(x) is the boundary-layer 00 thickness, x is the streamwise coordinate, y is the coordinate normal to the wall, and V is the freestream velocity. (a) Calculate the local skin friction drag using the following momentum integral formula (Hint: x and 8(x) are treated as constants in the integral) (15 points)...

  • 3). Standard air flows over a flat plate as shown. Laminar Find: boundary layer forms on...

    3). Standard air flows over a flat plate as shown. Laminar Find: boundary layer forms on the surface. Assume the boundary (a). Wall shear stress, Fj)! layer bas a cubic velocity profile: (b). Boundary layer thickness, x)! (c). Shape factor (H-8t/0) Momentum integral equation on a flat plate is ax) Ud(u/U) Ху 1m The displacement thickncss and the momentum thickness are Freestream velocity is 1.0 m/s. The fluid viscosity and density are 1.55 x 10 m'ls and 1.23 kg/m, respectively...

  • Air is flowing over a long flat plate with a velocity of 3 m/s. The density...

    Air is flowing over a long flat plate with a velocity of 3 m/s. The density is 1.127 kg/mº, and the dynamic viscosity is 1.918-10-kg/m s. The hydrodynamic boundary layer thickness at a distance 0.3 m from the leading edge is: 0 6.41 mm 52,883 mm 5.85 mm 3.22 mm None of the above

  • Air at 25 °C and 1 atm is flowing over a long flat plate with a...

    Air at 25 °C and 1 atm is flowing over a long flat plate with a velocity of 8 m/s. (a) Determine the distance from the leading edge of the plate where the flow becomes turbulent. (b) What will be the boundary layer thickness at the end of the plate? (c) If the plate is a 2m by 2 m square, what will be the friction drag acting on the plate? Schematic Given ssumptions Find v=8m/s xcr ,FD ,δ@x=L L-2m...

  • A thin, flat plate of 0.6 m square is immersed in a parallel stream of air at atmospheric pressure and 15 ºC flowing at a velocity of 6 m/s. Neglect edge effects. a) Determine the drag force exerted o...

    A thin, flat plate of 0.6 m square is immersed in a parallel stream of air at atmospheric pressure and 15 ºC flowing at a velocity of 6 m/s. Neglect edge effects. a) Determine the drag force exerted on the plate. b) Determine the boundary layer thickness and the local drag coefficient at a distance 0.3 m from the leading edge.

  • Air at T = 5 °C is flowing over a suspended 1-m long flat plate at...

    Air at T = 5 °C is flowing over a suspended 1-m long flat plate at a velocity of 10 m/s. Determine the total drag force per-unit-width acting on the plate and location where the flow transitions to turbulent. Provide a schematic and show all work!

  • Air at a temperature of 300 K flows over one side of a flat plate of...

    Air at a temperature of 300 K flows over one side of a flat plate of width 1 m at a velocity of 20 m/s. The plate has a constant surface temperature of 350 K. Assume Re(x,c)=5x10^5. a) What is the velocity boundary layer thickness at the end of the plate if L=0.25 m? What if L=1 m? b) Calculate the drag on the plate if L=0.25 m. What is the drag if L=1 m? c) Find the heat transfer...

  • RCES Problem 7.002 Engine oil at 100°C and a velocity of 0.20 m/s flows over both...

    RCES Problem 7.002 Engine oil at 100°C and a velocity of 0.20 m/s flows over both surfaces of a 1-m-long flat plate maintained at 20°C 001 Determine: (a) The velocity and thermal boundary layer thicknesses at the trailing edge. (b) The local heat flux and surface shear stress at the trailing edge. (c) The total drag force and heat transfer per unit width of the plate. 02 Determine the velocity boundary layer thickness 6 at the trailing edge, in m....

  • Exercise 2 Air at 20 °C and 1 atm flows over a flat plate at 50...

    Exercise 2 Air at 20 °C and 1 atm flows over a flat plate at 50 m/s. The plate is 300 cm long and is maintained at 60C. The width of the plate is 2 m. The critical Rec = 5 x 105 The properties are Conductivity k = 0.0263 W/mK, kinematic viscosity nu = v = 15.89 x 10-6 m²/s, Prandtl number is Pr=0.707 Density rho = p = 1.128 kg/m3 1. Determine the critical length Xc 2. Determine...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT