Question

One of the more sadistic rides at amusement parks is the “gravitron”. This is a vertical...

One of the more sadistic rides at amusement parks is the “gravitron”. This is a vertical cylinder with a radius of 1.5 m. People stand inside the cylinder, against the wall. The cylinder spins, and once people reach a sufficient velocity the floor drops out from under them, leaving them stuck on the wall. If the minimum coefficient of static friction between the people and the wall is µs = 0.70, what must be the minimum linear velocity of the cylinder wall before the floor drops, if the people are to stick?

0 0
Add a comment Improve this question Transcribed image text
Answer #1

For circular motion, centripetal force is provided by the normal in this case while friction balances weight mg

N = mv^2/r

Friction = uN = mg

  umv^2/r = mg

0.70v^2 /1.5 = 9.8

v = sqrt(9.8*1.5/0.70)

= 4.583 m/s Answer

Add a comment
Know the answer?
Add Answer to:
One of the more sadistic rides at amusement parks is the “gravitron”. This is a vertical...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Circular Motion The Gravitron is a superfun amusement park ride! People stand on the inside of...

    Circular Motion The Gravitron is a superfun amusement park ride! People stand on the inside of a cylindrical chamber, and when the cylindar spins and the floor drops out, the riders stick to the sides. Assume the Gravitron in the figure shown has a radius of 2.3 m and the coefficient of static friction between the persons' clothes and the walls is mu_s = 0.65. How fast should the Gravitron spin to ensure that an 85 kg person will stick...

  • The Gravitron is an amusement park ride in which riders stand against the inner wall of...

    The Gravitron is an amusement park ride in which riders stand against the inner wall of a large spinning steel cylinder. At some point, the floor of the Graviton drops out, instilling the fear in riders that they will fall a great height. However, the spinning motion of the Gravitron allows them to remain safely inside the ride. Most Gravitrons feature vertical walls, but the example shown in the figure has tapered walls of 25.7o. According to knowledgeable sources, the...

  • One of the rides found at carnivals is the rotating cylinder. The riders step inside the...

    One of the rides found at carnivals is the rotating cylinder. The riders step inside the vertical cylinder and stand with their backs against the curved wall. The cylinder spins very rapidly, and at some angular velocity, the floor is pulled away. The thrill-seekers now hang like flies on the wall. If the radius of the cylinder is 5 m and the coefficient of static friction between the people and the wall is 0.4, what is the maximum period (in...

  • An amusement park ride has a vertical cylinder with an inner radius of 4 m, which...

    An amusement park ride has a vertical cylinder with an inner radius of 4 m, which rotates about its vertical axis. Riders stand inside against the carpeted surface and rotate with the cylinder while it accelerates to its full angular velocity. At that point the floor drops away and friction between the riders and the cylinder prevents them from sliding downward. The coefficient of static friction between the riders and the cylinder is 0.91. What minimum angular velocity in radians/second...

  • An amusement park ride consists of a large vertical cylinder that spins about its axis fast...

    An amusement park ride consists of a large vertical cylinder that spins about its axis fast enough that any person inside is held up against the wall when the floor drops away. If the coefficient of static friction between the person and the wall is 0.563 and the radius of the cylinder is 8.87 m, what is the minimum tangential speed necessary to keep a person from falling? ____ m/s What is the maximum period of rotation to keep a...

  • Constants | Periodic Table Part A In an old-fashioned amusement park ride, passengers stand inside a...

    Constants | Periodic Table Part A In an old-fashioned amusement park ride, passengers stand inside a 5.1-m-diameter hollow steel cylinder with their backs against the wall. The cylinder begins to rotate about a vertical axis. Then the floor on which the passengers are standing suddenly drops away! If all goes well, the passengers will "stick" to the wall and not slide. Clothing has a static coefficient of friction against steel in the range 0.64 to 1.0 and a kinetic coefficient...

  • An amusement park ride consists of a large vertical cylinder that spins about its axis fast...

    An amusement park ride consists of a large vertical cylinder that spins about its axis fast enough that a person inside is stuck to the wall and does not slide down when the floor drops away. The acceleration of gravity is 9.8 m/s 2 . Given g = 9.8 m/s 2 , the coefficient µ = 0.564 of static friction between a person and the wall, and the radius of the cylinder R = 4.9 m. For simplicity, neglect the...

  • An amusement park ride consists of a large vertical cylinder that spins about its axis fast...

    An amusement park ride consists of a large vertical cylinder that spins about its axis fast enough that a person inside is stuck to the wall and does not slide down when the floor drops away. The acceleration of gravity is 9.8 m/s2. Given g = 9.8 m/s2, the coefficient μ = 0.569 of static friction between a person and the wall, and the radius of the cylinder R = 5.4 m. For simplicity, neglect the person’s depth and assume...

  • There is a classic amusement park ride where people stand with their backs pressed against the...

    There is a classic amusement park ride where people stand with their backs pressed against the side of a large cylinder that will rotate around, moving faster and faster. Eventually, the cylinder is spinning fast enough that the floor can drop away and the force from the wall on the people is large enough to hold them up (so they do not slip downward on the wall, even when the floor drops away and their feet no longer are toughing...

  • 1. In a popular amusement park ride, a cylinder of radius 3.0 meters is set in...

    1. In a popular amusement park ride, a cylinder of radius 3.0 meters is set in motion at an angular speed of 5.0 rad/s. The floor then drops away leaving the riders "stuck" to the wall in a vertical position. What minimum coefficient of friction between the riders clothing and wall of the cylinder is needed to keep the rider from slipping?

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT