Question

Hello, please help with this problem. Thanks in advance.

3. Consider a step potential shown in Figure B. Which of the following statement is correct for a particle with E<0. (a) The

0 0
Add a comment Improve this question Transcribed image text
Answer #1

ouescling to crustattet - صال کی یلغار پول Now lfe schiacetiger Equation روتاری و رده مد و زيا - ع کی مد (3 و 22 هكهيل مهام 2but in first segion tulee razzo than a: I amE ✓ 2 but If we take Eko or age negative energy than r aya is negative and parti(D²+r²) Kch) zo I 40) = Aeikh & Betka 1 K² = 2ME / ti so option (a) is stikut sight according to option (a) foran of wave fun

Add a comment
Know the answer?
Add Answer to:
Hello, please help with this problem. Thanks in advance. 3. Consider a step potential shown in...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Consider a finite square barrier potential shown below. Figure A. For a<x<b, the space part of...

    Consider a finite square barrier potential shown below. Figure A. For a<x<b, the space part of the electron wave function has the form: k? = 2mE/h? and gu2m(V,-E)/h2 (a) Aeikx (b) Aegn (c) Ae*** + Be** (d) Ae* (e) Aelkx + Be-ika For the finite square barrier potential shown below, Figure A. For x<a, the space part of the electron wave function has the form: k = 2mE/h? and g=2m(Vo-E) /h (a) Aeikx (b) Aetex (c) Ae*EN + Bet* (d)...

  • Consider a particle incident from the left on the potential step. Where E = 2 eV...

    Consider a particle incident from the left on the potential step. Where E = 2 eV V(x) {5 eV lo x < 0 x > 0 1) Find the wave function of the particle in two regions 2) Find reflection and transmission coefficients R and T

  • Consider a particle of mass m moving in a one-dimensional potential of the form V. for...

    Consider a particle of mass m moving in a one-dimensional potential of the form V. for 0<x<b, V(a) = 0 for Islal<e, for 1212, with V., b and c positive constants and c>b. a Explain why the wave function of the particle can be assumed to be cither an even function or an odd function of a. b For the case that the energy E of the particle is in the range 0<ESV., find the (unnormalized) even cigenfunctions and give...

  • (III) Quantum Tunneling Consider an electron in 1D in presence of a potential barrier of width...

    (III) Quantum Tunneling Consider an electron in 1D in presence of a potential barrier of width L represented by a step function ſo I<0 or 1>L V U. r>0 and 2<L The total wavefunction is subject to the time-independent Schrödinger equation = EV (2) 2m ar2 +V where E is the energy of the quantum particle in question and m is the mass of the quantum particle. A The total wavefunction of a free particle that enters the barrier from...

  • Write a functional programme in Python for the following task:   Consider the quantum mechanical problem of...

    Write a functional programme in Python for the following task:   Consider the quantum mechanical problem of a particle encountering a potential step of height V. The particle with wave number enters from the left and meets the potential step at 0. If the kinetic energy Eof the particle is larger than V, it can either pass the step and continue with a smaller wave number or be reflected keeping its kinetic energy. The formulae for the probability of transmission (T)...

  • Please answer all parts: Consider a particle in a one-dimensional box, where the potential the potential...

    Please answer all parts: Consider a particle in a one-dimensional box, where the potential the potential V(x) = 0 for 0 < x <a and V(x) = 20 outside the box. On the system acts a perturbation Ĥ' of the form: 2a ad αδα 3 Approximation: Although the Hilbert space for this problem has infinite dimensions, you are allowed (and advised) to limit your calculations to a subspace of the lowest six states (n = 6), for the questions of...

  • Q4. Consider the 1D infinite square-well potential shown in the figure below. V(x) O0 Position (a)...

    Q4. Consider the 1D infinite square-well potential shown in the figure below. V(x) O0 Position (a) State the time-independent Schrödinger equation within the region 0<x<L for a particle with positive energy E 2 marks] (b) The wavefunction for 0<x< L can be written in the general form y(x) = Asin kx + B cos kx. Show that the normalised wavefunction for the 1D infinite potential well becomes 2sn'n? ?snT/where ( "1,2,3 ! where ( n = 1,2,5, ). [4 marks]...

  • 4. Consider the potential step shown below with a beam of particles incident from the left....

    4. Consider the potential step shown below with a beam of particles incident from the left. V(x) a) Calculate the reflection coefficient for the case where the energy of the incident particies is less than the height of tihe step b) Calculate the reflection cocf ficient for the case where the encrgy of the incident particies is greater than the height of the step.

  • Consider a particle in a 1-d well with potential V(x) =-U for-d < x < d,...

    Consider a particle in a 1-d well with potential V(x) =-U for-d < x < d, and V(z) 0 elsewhere. We will use the variational wave function v(z) = A(b + r), t(x)-A(b-x), -b < r < 0, 0 < x < b, to show that a bound state exists for any U0. a) Normalize the wave function. Find the expectation values of the kinetic and potential energies b) Show that for sufficiently large b, with b> d, the expectation...

  • In class we looked at the example of the potential energy step seen below (where E...

    In class we looked at the example of the potential energy step seen below (where E > U_0). We wrote down the wave functions in complex exponential form as seen below: psi _0 (x) = A' e^i K_0 x + B' e^-i K_0 x x < 0 psi _1 (x) = C' e^i K_1 x + D' e^-i K_1 x x > 0 a) Assume the particles are incident on the barrier from the left, which coefficient can be set...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT