Question

Refrigerant-134a enters the condenser of a residential heat pump at 800 kPa and 35°C at a...

Refrigerant-134a enters the condenser of a residential heat pump at 800 kPa and 35°C at a rate of 0.018 kg/s and leaves at 800 kPa as a saturated liquid. If the compressor consumes 1.2 kW of power, determine (a) the COP of the heat pump and (b) the rate of heat absorption from the outside air.

0 0
Add a comment Improve this question Transcribed image text
Answer #1

In this question We have to calculate the enthalpy of points 2-3 from the property table and by multiplying it with mass flow rate in condenser with enthalpy diffrence of point 2-3 we will get the energy outflow from condenser . Cop is desired heat effect and divide it with work Input

For second part we simply apply energy balance for cycle .

Pls rate if it helped you thank u.

Add a comment
Know the answer?
Add Answer to:
Refrigerant-134a enters the condenser of a residential heat pump at 800 kPa and 35°C at a...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Problem #3 Refrigerant R-134a enters the condenser of a heat pump at 1000 kPa and 80°C...

    Problem #3 Refrigerant R-134a enters the condenser of a heat pump at 1000 kPa and 80°C at a rate of 0.025 kg/s and leaves at 1000 kPa as saturated liquid. If the compressor consumes 2 kW of power, determine: a) The COP of the heat pump (as heating device). b) The rate of heat absorption from the outside air. тан Condenser Throttling valve Compressor Evaporator To

  • 13. Refrigerant-134a enters the condenser of a residential refrigerator at 600 kPa and 40°C at a...

    13. Refrigerant-134a enters the condenser of a residential refrigerator at 600 kPa and 40°C at a rate of 0.018 kg/s and leaves at 600 kPa as a saturated liquid. The compressor consumes 1.5 kw of power (a) (1 point) Determine the rate of heat rejection to the room that houses the refrigerator. (Hint: Write the energy equation for the condenser. Answer 3.58 kW) (b) (1 point) Determine the rate of heat absorption from the food compartment. (Answer 2.1 kW) (c)...

  • A commercial refrigerator with refrigerant-134a as the working fluid is used to keep the refrigerated space at by The refrigerant enters the condenser at compressor consumes 3.3 kW of power, dete...

    A commercial refrigerator with refrigerant-134a as the working fluid is used to keep the refrigerated space at by The refrigerant enters the condenser at compressor consumes 3.3 kW of power, determine (a) the mass flow rate of the refrigerant, (b) the refrigeration load, (e) the COP, and (d) the g waste heat to cooling water that enters the condenser at 18°C at a rate of 0.25 kg/s and leaves at 26°C. 1.2 MPa and 50°C and leaves at the same...

  • A heat pump using refrigerant-134a as a refrigerant operates its condenser at 800 kPa and its...

    A heat pump using refrigerant-134a as a refrigerant operates its condenser at 800 kPa and its evaporator at −1.25°C. It operates on the ideal vapor-compression refrigeration cycle. What is the COP of the heat pump for the case when the vapor entering the compressor is superheated by 2°C and for the case when the compressor has no irreversibilities? The COP of the heat pump when the compressor has no irreversibilities is____. The COP of the heat pump when the vapor...

  • Problem I: Not applicable for 2017 Problem II: In an R-134a vapor-compression home heat pump, R-134A...

    Problem I: Not applicable for 2017 Problem II: In an R-134a vapor-compression home heat pump, R-134A enters the compressor (75% isentropic efficiency) as a saturated vapor at 200 kPa and leaves at 800 kPa. The refrigerant goes through a constant pressure condenser and leaves as a saturated liquid. The refrigerant then goes through an adiabatic expansion valve enters the evaporator as a liquid-vapor mixture. The mass flow rate of refrigerant is 0.1 kg/s. and Cod A. Write the equation for...

  • A heat pump with refrigerant-134a as the working fluid is used to keep a space at 25°C by |absorbing heat from geotherm...

    A heat pump with refrigerant-134a as the working fluid is used to keep a space at 25°C by |absorbing heat from geothermal water that enters the evaporator at 50°C at a rate of 0.046 kg/s and leaves at 40°C. The refrigerant enters the evaporator at 20°C with a quality 23 percent and leaves at the inlet pressure as saturated vapor. The refrigerant loses305 W o heat to the surroundings as it flows through the compressor and the refrigerant leaves the...

  • QUESTION 1 A heat pump with refrigerant-134a as the working fluid is used to keep a...

    QUESTION 1 A heat pump with refrigerant-134a as the working fluid is used to keep a space at 25°C by absorbing heat from geothermal water that enters the evaporator at 50°C at a rate of 0.065 kg/s and leaves at 40°C. The refrigerant enters the evaporator at 20°C with a quality of 23 percent and leaves at the inlet pressure as saturated vapor. The refrigerant loses 300 W of heat to the surroundings as it flows through the compressor and...

  • A compressor of a heat pump with refrigerant-134a as the working fluid consumes 2.3 kW of...

    A compressor of a heat pump with refrigerant-134a as the working fluid consumes 2.3 kW of power is used to keep a space at 25°C by absorbing heat from geothermal water that enters the evaporator at 60°C at a rate of 0.065 kg/s and leaves at 50°C. Refrigerant ententhe evaporator at 30Cwithaqualityof 15 percent and leaves atthe same pressure as saturated vapor. determine the mass flow rate of the refrigerant

  • An ideal vapor-compression refrigerant cycle operates at steady state with Refrigerant 134a as the working fluid....

    An ideal vapor-compression refrigerant cycle operates at steady state with Refrigerant 134a as the working fluid. Saturated vapor enters the compressor at -10°C, and saturated liquid leaves the condenser at 28°C. The mass flow rate of refrigerant is 5 kg/min. Determine (a) The compressor power, in kW (b) The refrigerating capacity, in tons. (c) The coefficient of performance. Sketch the system on a T-s diagram with full label. A vapor-compression heat pump with a heating capacity of 500 kJ/min is...

  • A commercial refrigerator with refrigerant-134a as the working fluid is used to keep the refrigerated space...

    A commercial refrigerator with refrigerant-134a as the working fluid is used to keep the refrigerated space at −25°C by rejecting waste heat to cooling water that enters the condenser at 20°C at a rate of 0.25 kg/s and leaves at 26°C. The refrigerant enters the condenser at 1.2 MPa and 50°C and leaves at the same pressure subcooled by 5°C. If the compressor consumes 3.3 kW of power, determine (a) the mass flow rate of the refrigerant, (b) the refrigeration...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT