Question

Spectrochemical Analysis Methods

Given the molar absorptivity data for cobalt complex with 2,3-quinoxalinedithiol (QT) and QDT at 510 nm are:

eCo = 36400 and egoT = 250 (at 510 nm)

A 0.515 g sample was dissolved and diluted to 50.0 mL. A 20.0 mL aliquot was treated and QDT was added (with an excess QDT of 1x 10-4 M). The final volume was then adjusted to 50.0 mL. This

solution has an absorbance of 0.371 at 510 nm in a 1.0 cm cell.

Determine (a) the molar concentrations of cobalt in the diluted solution and (b) the concentration in ppm of cobalt in the sample. (Molecular weights of cobalt = 58.93)

(Hint. (metal)in ppm = (g metal/g sample) x 10°)


0 0
Add a comment Improve this question Transcribed image text
Request Professional Answer

Request Answer!

We need at least 10 more requests to produce the answer.

0 / 10 have requested this problem solution

The more requests, the faster the answer.

Request! (Login Required)


All students who have requested the answer will be notified once they are available.
Know the answer?
Add Answer to:
Spectrochemical Analysis Methods
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Similar Homework Help Questions
  • Molar absorptivity data for the cobalt and nickel complexes with 2,3-quinoxalinedithiol are = 364...

    Molar absorptivity data for the cobalt and nickel complexes with 2,3-quinoxalinedithiol are = 36400 and = 5520 at 510 nm and = 1240 and = 17500 at 656 nm. A 0.389-g sample was dissolved and diluted to 50.0 mL. A 25.0-mL aliquot was treated to eliminate interferences; after addition of 2,3-quinoxalinedithiol, the volume was adjusted to 50.0 mL. This solution had an absorbance of 0.487 at 510 nm and 0.268 at 656 nm in a 1.00-cm cell. Calculate the concentration...

  • Molar absorptivity data for the cobalt and nickel complexes with 2,3-quinoxalinedithiol are = 36400 and =...

    Molar absorptivity data for the cobalt and nickel complexes with 2,3-quinoxalinedithiol are = 36400 and = 5520 at 510 nm and = 1240 and = 17500 at 656 nm. A 0.389-g sample was dissolved and diluted to 50.0 mL. A 25.0-mL aliquot was treated to eliminate interferences; after addition of 2,3-quinoxalinedithiol, the volume was adjusted to 50.0 mL. This solution had an absorbance of 0.487 at 510 nm and 0.268 at 656 nm in a 1.00-cm cell. Calculate the concentration...

  • Molar absorptivity data for the cobalt and nickel complexes with 2,3-quinoxalinedithiol are εco=36,400 and εNi=5520 at...

    Molar absorptivity data for the cobalt and nickel complexes with 2,3-quinoxalinedithiol are εco=36,400 and εNi=5520 at 510 nm and εco=1240 and εNi=17,500 at 656 nm. A 0.519 g sample was dissolved and diluted to 50.0 mL. A 25.00 mL aliquot was treated to eliminate interferences; after addition of 2,3-quinoxalinedithiol, the volume was adjusted to 50.0 mL. The solution has absorbances of 0.477 at 510 nm and 0.219 at 656 nm in a 1-cm cell. Calculate the concentration in parts per...

  • Ligand X forms a complex with both cobalt and copper, each of which has a maximum...

    Ligand X forms a complex with both cobalt and copper, each of which has a maximum absorbance at 510 nm and 645 nm, respectively. A 0.241 g sample containing cobalt and copper was dissolved and diluted to a volume of 100.0 mL. A solution containing ligand X was added to a 50.0 mL aliquot of the sample solution and diluted to a final volume of 100.0 mL. The measured absorbance of the unknown solution was 0.447 at 510 nm and...

  • Ligand X Forms.... Ligand X forms a complex with both cobalt and copper, each of which...

    Ligand X Forms.... Ligand X forms a complex with both cobalt and copper, each of which has a maximum absorbance at 510 nm and 645 nm, respectively. A 0.238-g sample containing cobalt and copper was dissolved and diluted to a volume of 100.0 mL. A solution containing ligand X was added to a 50.0 ml_ aliquot of the sample solution and diluted to a final volume of 100.0 mL. The measured absorbance of the unknown solution was 0.497 at 510...

  • A 5.00-mL aliquot of a solution that contains 2.01 ppm Fe2+ is treated with an appropriate...

    A 5.00-mL aliquot of a solution that contains 2.01 ppm Fe2+ is treated with an appropriate excess of thiocyanate and diluted to 50.0 mL. The molar absorptivity of a Fe2+-thiocyanate solution at 580 nm is 7000 L mol-1 cm-1. What is the absorbance of the above diluted Fe2+-thiocyanate solution at 580 nm in a 10.00-cm cell?

  • Please help! Ligand X forms a complex with both cobalt and copper, cach of which has...

    Please help! Ligand X forms a complex with both cobalt and copper, cach of which has a maximum absorbance at 510 nm and 645 nm, respectively. A 0.217 g sample containing cobalt and copper was dissolved and diluted to a volume of 100.0 mL. A solution containing ligand X was added to a 50.0 mL aliquot of the sample solution and diluted to a final volume of 100.0 mL. The measured absorbance of the unknown solution was 0.493 at 510...

  • To analyze the chromium in an unknown sample 1.5623 f of the sample was pretreated and...

    To analyze the chromium in an unknown sample 1.5623 f of the sample was pretreated and diluted to the exact 100 mL mark in a volumetric flask. Two 20.0 mL samples of this solution were taken. In the first sample, a Cr-EDTA complex is developed and sufficient water is added to give a total volume of 100.0 mL. In the second sample, 10.0 mL of Cr(III) standard solution at to concentration of 15 mM was added before developing the Cr-EDTA...

  • A standard solution of iron was made by weighing 0.075 g of Fe(NH4)2(SO4)2 6(H2O) in 250...

    A standard solution of iron was made by weighing 0.075 g of Fe(NH4)2(SO4)2 6(H2O) in 250 mL. Aliquots of this standard solution (see below) were transferred to a 100 mL volumetric flask, pH adjusted with citrate, and reacted with hydroquinone and o-phenanthroline and diluted to volume (100 mL). The absorbance was measured in a 1.0-cm cell using a Genesys 20 Spectrophotometer at 508 nm: Aliquot of standard solution Absorbance 1.0 mL 0.079 2.0 mL 0.163 5.0 mL 0.413 10.0 mL...

  • Please I need Answers for ALL THESE QUESTIONS with explanation 2 A solution containing 52.4 mg/100ml...

    Please I need Answers for ALL THESE QUESTIONS with explanation 2 A solution containing 52.4 mg/100ml of B (335 g/mole) has a transmittance of 45.2% in a 1.0 cm cell at 400nm. Calculate the "ABSORPTIVITY" of "B" at this wavelength Inna m L v inole -,.С/.x103 i-moll A Iron is treated with excess color 3.A 2.5ml aliquot of a solution containing 7.9ppm reagent to give a colored "Complex-product"; this was then diluted to 50ml with buffer. is 7,000 L/Mol/cm、.rm /つのフ...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
Active Questions
ADVERTISEMENT