Question

Consider an abrupt p-n diode - made of an unknown semiconductor - in thermal equilibrium with...

Consider an abrupt p-n diode - made of an unknown semiconductor - in thermal equilibrium with as many donors in the n-type region as acceptors in the p-type region and a maximum electric field of -13 kV/cm and a total depletion layer width of 1 µm. (assume es/ e0 = 12) a) What is the applied voltage, Va? b) What is the built-in potential of the diode? c) What are the donor density in the n-type region and the acceptor density in the p-type region? d) What is the intrinsic carrier density of the semiconductor if the temperature is 300 K ?

0 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
Consider an abrupt p-n diode - made of an unknown semiconductor - in thermal equilibrium with...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A pn junction diode is made of a new semiconductor with 10^16cm-3 acceptors in the p...

    A pn junction diode is made of a new semiconductor with 10^16cm-3 acceptors in the p side and 2x10^17cm-3 donors on the n-side. Intrinsic carrier concentration is same as silicon 10^10cm-3 at room temperature. Let's assume that a forward bias voltage is applied in a way that it create following minority carrier concentrations in quasi neutral regions. n(x) =10^4 - 10^14/[10^4(x+xp)-1] (cm-3) where x<xp<0 and p(x) = 500+10^15/[10^4(x+xn)+1] (cm-3) where x>xn>0. x is given in cm scale. Calculate the total...

  • A pn junction diode is made of a new semiconductor with 10^16cm-3 donors in the n...

    A pn junction diode is made of a new semiconductor with 10^16cm-3 donors in the n side and 2x10^17cm-3 acceptors on the p-side. Intrinsic carrier concentration is same as silicon 10^10cm-3at room temperature. Let's assume that a forward bias voltage is applied in a way that it create following minority carrier concentrations in quasi neutral regions. p(x) =10^4 + 10^14/[1+10^4(x-xn)] (cm-3) where x>xn>0 and n(x) = 500-10^15/[10^4(x+xp)-1] (cm-3) where x<-xp<0. x is given in cm scale. Calculate the total current...

  • The depletion width in an abrupt p-n junction is 0.45 μ m at thermal equilibrium. What...

    The depletion width in an abrupt p-n junction is 0.45 μ m at thermal equilibrium. What is the new depletion width under a reverse bias voltage of 2 V? The built-in voltage is 0.35V.

  • 4. AP-N abrupt junction is formed in Silicon as follows: The P-side has a uniform acceptor...

    4. AP-N abrupt junction is formed in Silicon as follows: The P-side has a uniform acceptor concentration of 2E18/cm^3 and the N-side has a uniform donor concentration of 2E15/cm^3. (a) Find the built-in voltage, V of the P-N junction at 300K. (b) Find the width of the depletion regions in the P and N regions of the transition region for zero reverse bias and for 5V reverse bias. (c) What is the depletion capacitance per unit area with zero reverse...

  • Problem 4: An abrupt silicon p-n junction diode has the following characteristics. side n-side N-4x 1016cm N1016cm3 n 1000 cm2/V sec 350 cm2/V sec Area A 102cm2 Calculate the following quantities...

    Problem 4: An abrupt silicon p-n junction diode has the following characteristics. side n-side N-4x 1016cm N1016cm3 n 1000 cm2/V sec 350 cm2/V sec Area A 102cm2 Calculate the following quantities: (a) Reverse saturation hole current component (b) Reverse saturation electron current component. (c) Minority carrier concentrations at the edge of the depletion layer, p(0) and pr(0), for a forward voltage of 0.6 V (d) Electron and hole current for the bias condition of (c). (e) Make a rough sketch...

  • P3. For an ideal abrupt silicon (Si) P*N diode with doping concentrations Na = 1 x...

    P3. For an ideal abrupt silicon (Si) P*N diode with doping concentrations Na = 1 x 107 cm3 and N 1 x 105 cm. (a) Find the stored minority carriers density in the N-side neutral region (infinitely long comparing with Lp and Ln) when a forward bias of 1 V is applied. (b) Calculate the hole current density in the region of (a) at x, 0. (Assume the average diffusion length of hole is 5 um the average carrier life...

  • P3. For an ideal abrupt silicon (Si) P*N diode with doping concentrations Na = 1 x...

    P3. For an ideal abrupt silicon (Si) P*N diode with doping concentrations Na = 1 x 107 cm3 and N 1 x 105 cm. (a) Find the stored minority carriers density in the N-side neutral region (infinitely long comparing with Lp and Ln) when a forward bias of 1 V is applied. (b) Calculate the hole current density in the region of (a) at x, 0. (Assume the average diffusion length of hole is 5 um the average carrier life...

  • 4. A p-type semiconductor has positive charge carriers but is electrically neutral. Similarly an n-type semiconductor...

    4. A p-type semiconductor has positive charge carriers but is electrically neutral. Similarly an n-type semiconductor has negative charge carriers but is electrically neutral. When they are put in contact (making a diode), statistical forces cause some of the charge carriers to migrate to the opposite semiconductor. The charge carriers move until an E-field is created to stop the migration. This E-field creates a depletion region near the junction where there are no charge carriers. If a forward voltage is...

  • Design an ideal abrupt silicon PN-junction at 300 K such that the donor impurity concentration in...

    XXX is 467 Design an ideal abrupt silicon PN-junction at 300 K such that the donor impurity concentration in the n-side N, = 5x1015 cm3 and the acceptor impurity concentration in the p-side N, = XXX × 1015/cm3 Assume that the diode area A-2x10-3 cm2 and 100cm work Note that the values obtained in the calculations may not be realistic as the Matric # varies greatly. The assignment is only to test your understanding, and must be handwritten Determine the...

  • B2 Consider a diode formed by making a p-n junction structure in a silicon sample as shown in Fig. B2. nt laver p-type...

    B2 Consider a diode formed by making a p-n junction structure in a silicon sample as shown in Fig. B2. nt laver p-type Si Fig. B2 (a). If the dopant concentrations of the n layer and the p-type silicon are 6x101" cm and 8x10 cm respectively, calculate the built-in potential of the p-n junction at room temperature (300 K) 15 (3 marks) (b). Due to overheating of the silicon sample, the diode has an operation temperature of 200 °C and...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT