Question

A mass is attached to a spring & is oscillating up & down. The position of...

A mass is attached to a spring & is oscillating up & down. The position of the oscillating mass is given by...
y=(3.2 cm)*Cos[2*3.14*t/(0.58 sec)]; where t is time.
Determine (a) the period of this motion; (b) the first time the mass is at position y=0.

Please show all work.

0 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
A mass is attached to a spring & is oscillating up & down. The position of...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A mass rests on a frictionless surface and is attached to the end of a spring....

    A mass rests on a frictionless surface and is attached to the end of a spring. The mass is pulled so that the spring is stretched... I would appreciate to have a detailed explanation for the last one. Thank you in advance. A mass rests on a frictionless surface and is attached to the end of a spring. The mass is pulled so that the spring Is stretched. The mass Is then released, and It starts oscillating back and forth...

  • The position of a mass (350 g) attached to an oscillating spring is given by: x...

    The position of a mass (350 g) attached to an oscillating spring is given by: x = 22.5 cm cos((7.84 rad/s) t) Find total energy of the mass. Determine the potential energy when the mass is located 5.3 cm from equilibrium. What is the velocity of the mass at the location in part B? Find the location of the mass when the velocity is one-third of its maximum value.

  • the position of a mass that is oscillating on a spring is given by x =...

    the position of a mass that is oscillating on a spring is given by x = (0.20m) cos [(5.00s^-1)t]. what is the period of the motion? what is the amplitude of the motion? what is the spring constant? what is the total mechanical energy of the system?

  • position of a mass

    The position of a mass oscillating on a spring is given by x = ( 3.6 cm)cos[2pi t/(0.67s)].A. What is the period of this motion?T=? sB. What is the first time the mass is at the position x = 0?t=? s

  • . A mass is attached to a spring. The position of the mass as it oscillates...

    . A mass is attached to a spring. The position of the mass as it oscillates on the spring is given by: y = A cos (8.2t) where the value of t is in seconds and A is 6.2 cm. (a) What is the period of the oscillator? (2 pts) (b) What is the velocity of the oscillator at time t = 0 and at time t = T/4? Give magnitude and direction (+ or – y direction). (4 pts)...

  • A mass of 0.24 kg is attached to a spring and set into oscillation on a...

    A mass of 0.24 kg is attached to a spring and set into oscillation on a horizontal frictionless surface. The simple harmonic motion of the mass is described by 7. x()(0.46 m)cos (12 rad/s)r]. Determine the following. (a) Amplirude of oscillation for the oscillating mass. (b) Period of the oscillation for the oscillating mass. 523 (c) Force constant (spring constant) for the spring. (d) Position of the mass after it has been oscillating for one half a period. 1.Gon NG...

  • A mass of 0.28 kg is attached to a spring and set into oscillation on a...

    A mass of 0.28 kg is attached to a spring and set into oscillation on a horizontal frictionless surface. The simple harmonic motion of the mass is described by x(t) = (0.34 m) cos((20 rad/st]. Determine the following (a) amplitude of oscillation for the oscillating mass (b) force constant for the spring N/m (c) position of the mass after it has been oscillating for one half a period (d) position of the mass one-third of a period after it has...

  • a mass of 0.5 kg is attached to a spring and set into oscillation on a...

    a mass of 0.5 kg is attached to a spring and set into oscillation on a horizontal frictionless surface. the simple harmonic motion of the mass is described by x(t)= (0.5m)cos[(18 rad/s) t]. Determine the following: a. position of the mass after it has been oscillating for one half a period b. position of the mass one-third of a period after it has been released c. the time it takes to get to the position x= -0.1m after it has...

  • A mass of 0.38 kg is attached to a spring and set into oscillation on a...

    A mass of 0.38 kg is attached to a spring and set into oscillation on a horizontal frictionless surface. The simple harmonic motion of the mass is described by x(t) = (0.20 m)cos((10 rad/st]. Determine the following. (a) amplitude of oscillation for the oscillating mass 0.20 (b) force constant for the spring 38 ✔ N/m (c) position of the mass after it has been oscillating for one half a period -20 m (d) position of the mass one-third of a...

  • A mass is oscillating up and down at the end of a spring. A graph of...

    A mass is oscillating up and down at the end of a spring. A graph of displacement as a function of time is shown where up is the positive direction. a) What is the period of this motion? Explain b) At which point or points is the acceleration positive? Explain c) At which point or points does the mass have a zero velocity but nonzero net force? Explain d) At which point or points is the net force on the...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT