Question

1. A 1200kg car traveling at 11.0 m/s runs into a 920kg car traveling in the...

1. A 1200kg car traveling at 11.0 m/s runs into a 920kg car traveling in the same direction at 5.00 m/s. After the collision the 1200kg car has slowed to 8.00 m/s.

a) what is the final velocity of the 920kg car?

2. A bullet mass of m=0.0010kg embeds itself in a wooden block with mass M=0.999kg, which then compresses a spring (k=230 N/m) by a distance x=0.050m before coming to rest. The coefficient of kinetic friction between the block and the table is u=0.40.

a) what is the velocity of the bullet black system immediately after the collision? (I got .98507 for this)

b) what is the initial velocity of the bullet?

0 0
Add a comment Improve this question Transcribed image text
Answer #1

1.

During collision momentum is conserved

Initial momentum = Final momentum

ANSWER:

==============================

2.

Consider the bullet-block system after the collision

The kinetic energy of the bullet-block system after the collision is converted to the elastic potential energy of the spring. Also,

some portion of that kinetic energy is lost due to friction.

(a) ANSWER:

=================================

(b)

D

During collision momentum is conserved

Initial momentum = Final momentum

(b)ANSWER:

================================

Add a comment
Know the answer?
Add Answer to:
1. A 1200kg car traveling at 11.0 m/s runs into a 920kg car traveling in the...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A bullet with mass m = 40 grams traveling at v = 400 m/s strikes a...

    A bullet with mass m = 40 grams traveling at v = 400 m/s strikes a block of wood suspended from a ceiling with a massless cord. The collision last for 15 milliseconds, and after it is completed the bullet embeds itself into the block. Then, the combined system rises to a maximum height has its swings upward as shown. The mass of the wooden block is M=5.0kg and the length of the cord is L = 1.25 m. Calculate...

  • A bullet of mass 0.056 kg traveling horizontally at a speed of 100 m/s embeds itself...

    A bullet of mass 0.056 kg traveling horizontally at a speed of 100 m/s embeds itself in a block of mass 1.5 kg that is sitting at rest on a nearly frictionless surface. (a) What is the speed of the block after the bullet embeds itself in the block? v= m/s (b) Calculate the kinetic energy of the bullet plus the block before the collision: K; = (c) Calculate the kinetic energy of the bullet plus the block after the...

  • A bullet of mass 0.017 kg traveling horizontally at a high speed of 210 m/s embeds...

    A bullet of mass 0.017 kg traveling horizontally at a high speed of 210 m/s embeds itself in a block of mass 4 kg that is sitting at rest on a nearly frictionless surface. (a) What is the speed of the block after the bullet embeds itself in the block? Vf = m/s ) Calculate the total translational kinetic energy before and after the collision. Ktrans,i = Ktrans,f = (c) Compare the two results and explain why there is a...

  • A bullet of mass 0.017 kg traveling horizontally at a high speed of 210 m/s embeds...

    A bullet of mass 0.017 kg traveling horizontally at a high speed of 210 m/s embeds itself in a block of mass 5 kg that is sitting at rest on a nearly frictionless surface. (a) What is the speed of the block after the bullet embeds itself in the block? Vr = 42 x m/s (b) Calculate the total translational kinetic energy before and after the collision. Ktrans,i = 374.85 Ktrans,f= (c) Compare the two results and explain why there...

  • a 1200kg car traveling initially qith a speeed of 25.0 m/s in an easterly direction crashes into the rear end of a 9,000kg truck moving in the same direction at 20.0 m/s

    a 1200kg car traveling initially qith a speeed of 25.0 m/s in an easterly direction crashes into the rear end of a 9,000kg truck moving in the same direction at 20.0 m/s. the velocity of the car right after the collision is 18.0 m/s to the east. what is the celocity of the truck right after the collision?

  • A bullet of mass 1.8×10−3 kg embeds itself in a wooden block with mass 0.987 kg...

    A bullet of mass 1.8×10−3 kg embeds itself in a wooden block with mass 0.987 kg , which then compresses a spring (k = 150 N/m ) by a distance 5.5×10−2 m before coming to rest. The coefficient of kinetic friction between the block and table is 0.54. What is the initial speed of the bullet? Vinit==? What fraction of the bullet's initial kinetic energy is dissipated (in damage to the wooden block, rising temperature, etc.) in the collision between...

  • A bullet of mass 2.0×10−3 kg embeds itself in a wooden block with mass 0.996 kg...

    A bullet of mass 2.0×10−3 kg embeds itself in a wooden block with mass 0.996 kg , which then compresses a spring (k = 120 N/m ) by a distance 4.5×10−2 m before coming to rest. The coefficient of kinetic friction between the block and table is 0.49. A) What is the initial speed of the bullet? B) What fraction of the bullet's initial kinetic energy is dissipated (in damage to the wooden block, rising temperature, etc.) in the collision...

  • A 7.30 g bullet traveling at 490 m/s embeds itself in a 1.65 kg wooden block...

    A 7.30 g bullet traveling at 490 m/s embeds itself in a 1.65 kg wooden block at rest on a frictionless surface. . The block is attached to a spring with k = 90.0 N/mFind the period.Find the amplitude of the subsequent simple harmonic motion.Find the total energy of the bullet+block+spring system before the bullet enters the block.Find the total energy of the bullet+block+spring system after the bullet enters the block.

  • A 4.87-g bullet is moving horizontally with a velocity of +358 m/s, where the sign +...

    A 4.87-g bullet is moving horizontally with a velocity of +358 m/s, where the sign + indicates that it is moving to the right (see part a of the drawing). The bullet is approaching two blocks resting on a horizontal frictionless surface. Air resistance is negligible. The bullet passes completely through the first block (an inelastic collision) and embeds itself in the second one, as indicated in part b. Note that both blocks are moving after the collision with the...

  • A 8.05-g bullet is moving horizontally with a velocity of +345 m/s, where the sign +...

    A 8.05-g bullet is moving horizontally with a velocity of +345 m/s, where the sign + indicates that it is moving to the right (see part a of the drawing). The bullet is approaching two blocks resting on a horizontal frictionless surface. Air resistance is negligible. The bullet passes completely through the first block (an inelastic collision) and embeds itself in the second one, as indicated in part b. Note that both blocks are moving after the collision with the...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT