Question

1) What will be the speed of a solid sphere of mass M and radius R0...

1) What will be the speed of a solid sphere of mass M and radius R0 when it reaches the bottom of incline if it starts from rest at a vertical height of H and rolls without slipping? Compare to the case of an object sliding down with no rotation. (replace the variables with any number)

2) A bullet of mass m and v strikes and becomes imbedded at the edge of a cylinder of mass m and radius R0. The cylinder, initially at rest, begins to rotate about its symmetry axis, which remains fixed is the position. Assuming no frictional torque. What is the angular velocity of the cylinder after the collision? ( replace the variables with any number)

0 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
1) What will be the speed of a solid sphere of mass M and radius R0...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • 2.00 m 30 Given: A solid sphere of mass m 0.60 kg and radius r 0.20...

    2.00 m 30 Given: A solid sphere of mass m 0.60 kg and radius r 0.20 m is released from rest at the top of the incline shown. For this system, the coefficient of dynamic (sliding) friction is Hdyn 0.3 and the coefficient of static friction is Hstatic -0.5 Find: (a) Assume that the sphere rolls without slipping down the incline. Under this assumption, what is the acceleration of the sphere parallel to the incline, and how long does it...

  • A solid sphere of mass M and radius R sits on a an incline of angle...

    A solid sphere of mass M and radius R sits on a an incline of angle θ, when it is let go it rolls down-hill without slipping at total vertical distance of h. At the bottom of the hill the ball moves onto a horizontal surface and enters into a completely elastic collision with a stationary block of height 2R and mass 2M. Find the speed of the block right after the collision.

  • A solid sphere of radius r0=1.5cm rolls without slipping inside a circular track of radius R0=26cm...

    A solid sphere of radius r0=1.5cm rolls without slipping inside a circular track of radius R0=26cm starting from rest at a height R0 above the bottom of the track. When it leaves the track passing through an angle of 1350 as shown in the figure below, (a) what will be its speed when it is launching from the track, and (b) at what distance D from the base of the track will the sphere hit the ground? 135 Ro

  • A small solid sphere with radius 0.15 cm and mass 0.15 g rolls without slipping on...

    A small solid sphere with radius 0.15 cm and mass 0.15 g rolls without slipping on the inside of a large fixed hemisphere with radius 0.10 m and a vertical axis of symmetry. The sphere starts at the top from rest. (a) What is its kinetic energy at the bottom? (b) What fraction of its kinetic energy at the bottom is associated with rotation about an axis through its center of mass? (c) What is the magnitude of the normal...

  • A small solid sphere with radius 0.46 cm and mass 0.56 g rolls without slipping on...

    A small solid sphere with radius 0.46 cm and mass 0.56 g rolls without slipping on the inside of a large fixed hemisphere with radius 0.16 m and a vertical axis of symmetry. The sphere starts at the top from rest. (a) What is its kinetic energy at the bottom? (b) What fraction of its kinetic energy at the bottom is associated with rotation about an axis through its center of mass? (c) What is the magnitude of the normal...

  • A uniform solid sphere with a mass M = 2.0 kg and a radius R =...

    A uniform solid sphere with a mass M = 2.0 kg and a radius R = 0.10 m is set into motion with an angular speed ωo = 70 rad/s. At t = 0 the sphere is dropped a short distance (without bouncing) onto a horizontal surface. There is friction between the sphere and the surface. Find (a) the angular speed of rotation when the sphere finally rolls without slipping at time t = T and (b) the amount of...

  • 4. A solid sphere of mass 2 ks and radius of 0.2 m starts from rest...

    4. A solid sphere of mass 2 ks and radius of 0.2 m starts from rest and rolls down a 3.00- high without slipping. What is the total energy of the sphere just before it starts rolling down? mazka 5. What is the velocity of the sphere just as it reaches the bottom of the incline? 6. What is the rotational kinetic energy of the sphere just as it reaches the bottom of the incline?

  • Example2 25k A solid sphere (mass M, radius R) is released from rest at the top...

    Example2 25k A solid sphere (mass M, radius R) is released from rest at the top of an inclined plane (angle ?). There is sufficient friction between the incline and the sphere to allow it to roll without slipping. (a) Draw and FBD for the sphere. (b) Find the linear acceleration of the sphere (c) Find the magnitude of the frictional force acting on the sphere. (d) Find the minimum required coefficient of friction to keep the sphere from slipping....

  • A solid sphere of mass 1.5 kg and radius 15 cm rolls without slipping down...

    A solid sphere of mass 1.5 kg and radius 15 cm rolls without slipping down a 35° incline that is 7.9 m long. Assume it started from rest. The moment of inertia of a sphere is given by I = 2/5MR2. (a) Calculate the linear speed of the sphere when it reaches the bottom of the incline. (b) Determine the angular speed of the sphere at the bottom of the incline.

  • A solid sphere (I = 2/5 MR2) of mass 0.44 kg and radius 0.022 m rolls,...

    A solid sphere (I = 2/5 MR2) of mass 0.44 kg and radius 0.022 m rolls, without slipping, down an incline of height 0.98 m. What is the speed of the sphere at the bottom of the incline?

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT