Question

Considering that 0.1 kg of gas contained within a piston-cylinder assembly undergoes a polytropic expansion process...

Considering that 0.1 kg of gas contained within a piston-cylinder
assembly undergoes a polytropic expansion process with polytropic exponent n=2. The
initial state has specific internal energy 10 J/kg, pressure 100 Pa, specific volume 2 m3/kg,
and the final state has specific internal energy 5 J/kg and pressure 50 Pa.
1. Sketch the process on a P − V diagram
2. Determine the total heat transfer into or out of the gas during the process.

0 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
Considering that 0.1 kg of gas contained within a piston-cylinder assembly undergoes a polytropic expansion process...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A gas contained within a piston-cylinder assembly undergoes two processes

    A gas contained within a piston-cylinder assembly undergoes two processes, A and B, between the same end states, 1 and 2, where p1=10 bar, V1= 0.1 m3, U1=400 kJ and p2=1 bar, V2=1.0 m3, U2=200 kJ: Process A. Process from 1 to 2 during which the pressure-volume relation is p.V = constant. Process B: Constant-volume process from state 1 to a pressure of 2 bar, followed by a linear pressure-volume process to state 2 Kinetic and potential energy effects can be ignored. For...

  • As shown in the figure below, a gas contained within a piston-cylinder assembly, initially at a...

    As shown in the figure below, a gas contained within a piston-cylinder assembly, initially at a volume of 0.1 m3, undergoes a constant-pressure expansion at p 2 bar to a final volume of V2 0.2 m3, while being slowly heated through the base. The change in internal energy of the gas is 0.25 kJ. The piston and cylinder walls are fabricated from heat-resistant material, and the piston moves smoothly in the cylinder. The local atmospheric pressure is 1 bar. Piston-...

  • 0.21 kg of a gas contained within a piston-cylinder assembly undergoes a constant pressure process at...

    0.21 kg of a gas contained within a piston-cylinder assembly undergoes a constant pressure process at 4 bar beginning at v1 = 0.3 m3/kg. For the gas as the system, the moving boundary work is -18 kJ. Determine the initial and final volume of the gas, in m3.

  • Problem 2. As shown in the figure, a gas contained within a piston-cylinder assembly, initially at...

    Problem 2. As shown in the figure, a gas contained within a piston-cylinder assembly, initially at a volume of 0.1 m3, undergoes a constant-pressure expansion at 2 bar to a final volume of 0.12 m3, while being slowly heated through the base. The change in internal energy of the gas is 0.25 kJ. The piston and cylinder walls are fabricated fronm heat-resistant material, and the piston moves smoothly in the cylinder. The local atmospheric pressure is 1 bar. (a) For...

  • 1.Water vapor contained in a piston–cylinder assembly undergoes an isothermal expansion at 277°C from a pressure...

    1.Water vapor contained in a piston–cylinder assembly undergoes an isothermal expansion at 277°C from a pressure of 5.1 bar to a pressure of 2.7 bar. Evaluate the work, in kJ/kg. 2.Nitrogen (N2) contained in a piston–cylinder arrangement, initially at 9.3 bar and 437 K, undergoes an expansion to a final temperature of 300 K, during which the pressure–volume relationship is pV1.1 = constant. Assuming the ideal gas model for the N2, determine the heat transfer in kJ/kg. 3.Argon contained in...

  • please help me with this problem! 4) A gas contained within a piston-cylinder assembly undergoes four...

    please help me with this problem! 4) A gas contained within a piston-cylinder assembly undergoes four processes in series: Process 1-2. Expansion with Pr= constant, P,-3 bar, p, = 0.2 m, P2-2 bar, U-U-200 kJ. Process 2-3: Constant volume cooling of the gas to 1 bar, with Us 100 kJ. Process 4-1: Expansion with PV constant. a) Evaluate V2 and V4, each in m3 b) Sketch the processes in series on a P-V diagram labeled with pressures and volumes at...

  • Problem # 2 135 Points Polytropic Processes A piston-cylinder undergoes a constant pressure expansion process followed...

    Problem # 2 135 Points Polytropic Processes A piston-cylinder undergoes a constant pressure expansion process followed by an adiabatic compression. The adiabatic compression can be modeled as a polytropic process PVn constant with a volume exponent n 1.4. At state 1 the pressure of the system is P1 60 psi, the volume is Vi 8.868 ft3 and the internal energy U 1630.6 BTU. The work output during the constant pressure process is W2-75.2 BTU and the heat transfer input for...

  • Air in a piston-cylinder assembly undergoes a polytropic expansion in which the pressure – specific volume...

    Air in a piston-cylinder assembly undergoes a polytropic expansion in which the pressure – specific volume relation is p. V..2=constant. The initial volume is 0.5 m², the initial temperature is 500 K and initial pressure is 600 kPa. The final pressure is 300 kPa. Determine (a) the mass of air, in kg (b) the boundary work, in kJ (c) the final temperature in K and (d) the heat transfer, in kJ.

  • finding work and heat transfer given a piston-cylinder assembly

    As shown in Fig. P2.56, a gas contained within a piston–cylinder assembly, initially at a volume of 0.1 m3, undergoesa constant-pressure expansion at 2 bar to a final volume of0.12 m3, while being slowly heated through the base. Thechange in internal energy of the gas is 0.25 kJ. The pistonand cylinder walls are fabricated from heat-resistant material,and the piston moves smoothly in the cylinder. The localatmospheric pressure is 1 bar.(a) For the gas as the system, evaluate work and heat...

  • A gas in a piston–cylinder assembly undergoes a process for which the relationship between pressure and...

    A gas in a piston–cylinder assembly undergoes a process for which the relationship between pressure and volume is pV^n = constant. The initial pressure is 1 bar, the initial volume is 0.13 m^3, and the final pressure is 9 bar. The value of the polytropic exponent is n = 1.2. Determine the final volume, in m^3, and the work for the process, in kJ.

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT