Question

Q) Write a mathematical expression for the overall heat transfer rate of a cross flow exchanger...

Q) Write a mathematical expression for the overall heat transfer rate of a cross flow exchanger in general. Which part of the expression constitutes the driving force of heat transfer. Is there any term that is different from a double pipe heat exchanger.

Please write clearly thank you

0 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
Q) Write a mathematical expression for the overall heat transfer rate of a cross flow exchanger...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A counter-flow heat exchanger is stated to have an overall heat transfer coefficient of 284 W/m2.K...

    A counter-flow heat exchanger is stated to have an overall heat transfer coefficient of 284 W/m2.K when operating at design and clean conditions. Hot fluid enters the tube side at 101°C and exits at 71°C, while cold fluid enters the shell side at 27°C and exits at 42°C. After a period of use, built-up scale in the heat exchanger gives a fouling factor of 0.0004 m2 K/W. The surface area is 93 m². Assume both hot and cold fluids have...

  • A cross-flow heat exchanger used in a cardiopulmonary bypass procedure cools blood flowing at 4 L/min...

    A cross-flow heat exchanger used in a cardiopulmonary bypass procedure cools blood flowing at 4 L/min from a body temperature of 37°C to 25°C in order to induce body hypothermia, which reduces metabolic and oxygen requirements. The coolant is ice water at 0°C, and its flow rate is adjusted to provide an outlet temperature of 13°C. The heat exchanger operates with the blood flow unmixed and the water flow mixed, and the overall heat transfer coefficient is 750 W/m2.K. The...

  • 4. A Cross-Flow Air-to-Water Heat Exchanger with an effectiveness of 0.58 is used to heat water, ...

    4. A Cross-Flow Air-to-Water Heat Exchanger with an effectiveness of 0.58 is used to heat water, entering at 20°C at a rate of 4 kg/s, using hot air, entering at 127oC at a rate of 10 kg/s. The Overall Heat Transfer Coefficient for the Heat exchanger is 275 W/m'K. Assuming both fluids are unmixed, determine; (i) The Heat Capacity rates for both the air and the water (ii) The heat transfer surface area. ii) The exit temperature of the water...

  • In a counter flow double pipe heat exchanger water is heated from 25^0C to 75^0C by...

    In a counter flow double pipe heat exchanger water is heated from 25^0C to 75^0C by oil with specific heat of 1.44KJ/KgK and mass flow rate of 0.81 kg/s.The oil is cooled from 240^0C to 150^0C.If the overall heat exchanger coefficient is 470W/m^2 0C.Calculate; 1.The rate flow of heat transfer 2.Sketch temperature distribution diagram 3.The mass flow rate of water 4.The surface area of the heat exchanger

  • please do 11.33 11.32 A single-pass, cross-flow heat exchanger uses hot exhaust gases (mixed) to heat...

    please do 11.33 11.32 A single-pass, cross-flow heat exchanger uses hot exhaust gases (mixed) to heat water (unmixed) from 30 to 80°C at a rate of 3 kg/s. The exhaust gases, hav- ing thermophysical properties similar to air, enter and exit the exchanger at 225 and 100°C, respectively. If the overall heat transfer coefficient is 200 W/m2.K, estimate the required surface area. 11.33 Consider the fluid conditions and overall heat transfer coefficient of Problem 11.32 for a concentric tube heat...

  • An automobile radiator may be viewed as a cross-flow heat exchanger with both fluids unmixed. Water,...

    An automobile radiator may be viewed as a cross-flow heat exchanger with both fluids unmixed. Water, which has a flow rate of 0.045 kg/s, enters the radiator at 400 K and is to leave at 330 K. The water is cooled by air that enters at 0.75 kg/s and 300 K. If the overall heat transfer coefficient is 220 W/m2.K, what is the required heat transfer surface area, in mº? Assume that T =320 K when evaluating the properties of...

  • I. A finned-tube, cross-flow heat exchanger (F 0.96) is to use the exhaust of a gas...

    I. A finned-tube, cross-flow heat exchanger (F 0.96) is to use the exhaust of a gas turbine to heat pressurized water. Laboratory measurement are performed on a prototype version of the exchanger, which has a surface area of 8 m2, to determine the overall heat transfer coefficient as a function of operating conditions. Measurements made under particular conditions, for which in-5 kgs. Thi-350 ℃, m.-0.5 kg/s, and Tu-25℃, reveal a water outlet temperature of Tso-150℃. What is the overall heat...

  • An automobile radiator may be viewed as a cross-flow heat exchanger with both fluids unmixed. Water,...

    An automobile radiator may be viewed as a cross-flow heat exchanger with both fluids unmixed. Water, which has a flow rate of 0.055 kg/s, enters the radiator at 400 K and is to leave at 330 K. The water is cooled by air that enters at 0.75 kg/s and 300 K. If the overall heat transfer coefficient is 180 W/m2.K, what is the required heat transfer surface area, in m?? Assume that TC,0 = 320K when evaluating the properties of...

  • (40 pts) Shell-and-Tube Heat Exchanger to make Jell-O Cups A counter-current shell-and-tube heat exchanger is used...

    (40 pts) Shell-and-Tube Heat Exchanger to make Jell-O Cups A counter-current shell-and-tube heat exchanger is used to heat Jell-O solution (water + gelatin) using saturated steam on the shell side. Jell-O solution must be heated to at least 80 oC, poured into individual plastic cups, and then cooled to make the solid Jell-O cups. The Jell-O solution is heated with steam that enters the shell at 2.0 bar (Tsteam = 120oC) and exits as a saturated liquid. At this temperature...

  • A concentric-pipe parallel-flow heat exchanger is to heat water (cp = 4.18 kJ/kg.K) from 20°C to...

    A concentric-pipe parallel-flow heat exchanger is to heat water (cp = 4.18 kJ/kg.K) from 20°C to 80°C at a rate of 1.2 kg/s. The heating is to be accomplished by geothermal water (Cp =4.31 kJ/kg.K) available at 160°C at a mass flow rate of 2.0 kg/s. The inner pipe is thin-walled and has a diameter of 1.5 cm. If the overall heat transfer coefficient of the heat exchanger is 640 W/m2.K, determine the length of the pipe required to achieve...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT