Question

A lens has a power of -3.09 D. You look through it a 1.00-cm long leaf...

A lens has a power of -3.09 D. You look through it a 1.00-cm long leaf held 12.71 cm from the lens. Calculate the image height, hi, in cm, including the correct sign (+ for upright, - for inverted).

0 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
A lens has a power of -3.09 D. You look through it a 1.00-cm long leaf...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • 11.87 A 1.00-cm-high object is placed 4.85 cm to the left of a converging lens of...

    11.87 A 1.00-cm-high object is placed 4.85 cm to the left of a converging lens of focal length 8.20 cm. A diverging lens of focal length - 16.00 cm is 6.00 cm to the right of the converging lens. Find the position and height of the final image. position Take the image formed by the first lens to be the object for the second lens and apply the lens equation to each lens to locate the final image. cm 8.442...

  • A 1.00-cm-high object is placed 4.85 cm to the left of a converging lens of focal...

    A 1.00-cm-high object is placed 4.85 cm to the left of a converging lens of focal length 8.20 cm. A diverging lens of focal length - 16.00 cm is 6.00 cm to the right of the converging lens. Find the position and height of the final image. position cm height cm Is the image inverted or upright? O upright inverted Is the image real or virtual? Oreal virtual

  • A thin lens with focal length f = +10.0 cm sits 5.0 cm away from an...

    A thin lens with focal length f = +10.0 cm sits 5.0 cm away from an upright candle. The candle is sitting on the central axis and is 5.0 cm tall (including the flame). Using only a ray diagram and without doing any calculations, estimate: (a) the image distance (with correct sign) (b) the height of the image (including the flame) (c) whether the image is real or virtual (d) whether the image is upright or inverted I can do...

  • A 20 cm tall object is located 70 cm away from a diverging lens that has...

    A 20 cm tall object is located 70 cm away from a diverging lens that has a focal length of 20 cm. Use a scaled ray tracing to answer parts a-d. a. Is the image real or virtual? b. Is the image upright or inverted? c. How far from the lens is the image? d. What is the height of the image? e. Now use the thin lens equation to calculate the image distance and the magnification equation to determine...

  • A 3.5-cm-tall object is 60 cm in front of a diverging lens that has a -30...

    A 3.5-cm-tall object is 60 cm in front of a diverging lens that has a -30 cm focal length. Part A Calculate the image distance d; Note that you should retain the sign of d; in your answer. Express your answer to two significant figures and include the appropriate units. Å MO O ? cm di = 240 Submit Previous Answers Request Answer X Incorrect; Try Again; 29 attempts remaining Part B Calculate the image height hi. Type a positive...

  • An object 2.02 cm high is placed 40.2 cm to the left of a converging lens having a focal length o...

    An object 2.02 cm high is placed 40.2 cm to the left of a converging lens having a focal length of 30.5 cm. A diverging lens with a focal length of-20.0 cm is placed 110 cm to the right of the converging lens. (a) Determine the position of the final image. distance location to the right , of the diverging lens (b) Determine the magnification of the final image 128.4 Your response differs from the correct answer by more than...

  • 1. You have a converging lens with a focal length of 1.5 cm and a diverging...

    1. You have a converging lens with a focal length of 1.5 cm and a diverging lens with a focal length of 2.5 cm. You also have a binder clip with a height of 1.6 cm. A. Sketch the ray tracing if the binder clip is 4.1 cm from the converging lens. B. Use the thin lens equation to calculate the location and size of the image if the binder clip is 4.1 cm from the converging lens. C. What...

  • The type of lens is not given. (10%) Problem 6: Two lenses are mounted d= 29 cm apart on an optical bench. The focal len...

    The type of lens is not given. (10%) Problem 6: Two lenses are mounted d= 29 cm apart on an optical bench. The focal length of the first lens is fı = 7.9 cm and that of the second lens is f2 = 5.6 cm. An object of height ho = 3.4 cm is placed at a distance of do = 29 cm in front of the first lens. 25% Part (a) Ignoring the second lens for now, at what...

  • Consider the optical system shown in the figure. The lens and mirror are separated by d...

    Consider the optical system shown in the figure. The lens and mirror are separated by d = 1.00 m and have focal lengths off, = +89.0 cm and f2 = -48.8 cm, respectively. An object is placed p = 1.00 m to the left of the lens as shown. Object Lens Mirror 1.00 m 1.00 m i (a) What is the distance (in cm) and location of the final image formed by light that has gone through the lens twice?...

  • 9. -15 points KatzPSE1 38.P.076 My Notes Ask Your The figure below shows an object placed a distance doi from one of two converging lenses separated by s 1.00 m. The first lens has focal length fi 23...

    9. -15 points KatzPSE1 38.P.076 My Notes Ask Your The figure below shows an object placed a distance doi from one of two converging lenses separated by s 1.00 m. The first lens has focal length fi 23.0 cm, and the second lens has focal length 2 47.0 cm. An image is formed by light passing through both lenses at a distance = 12.0 cm to the left of the second lens. Include the sign of the value in your...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT