Question

You wish to cool a 1.83 kg block of iron initially at 84.0°C to a temperature...

You wish to cool a 1.83 kg block of iron initially at 84.0°C to a temperature of 57.0°C by placing it in a container of milk initially at 24.0°C. Determine the volume (in L) of the liquid needed in order to accomplish this task without boiling. The density and specific heat of milk are respectively 1,035 kg/m3 and 3,930 J/(kg · °C), and the specific heat of iron is 448 J/(kg · °C).

0 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
You wish to cool a 1.83 kg block of iron initially at 84.0°C to a temperature...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A 34 kg iron block and a 48-kg copper block, both initially at 80°C, are dropped...

    A 34 kg iron block and a 48-kg copper block, both initially at 80°C, are dropped into a large lake at 15°C. Thermal equilibrium is established after a while as a result of heat transfer between the blocks and the lake water. Determine the total entropy change for this process. The specific heat of Iron at room temperature is cp0.45 kJ/kg.K. The specific heat of copper at 27°C is ep 0,386 kJ/kg.K. Iron Lake 15°C Copper The total entropy change...

  • 2. A 0.825-kg block of iron, with an average specific heat of 5.60 x102 J/kg K,...

    2. A 0.825-kg block of iron, with an average specific heat of 5.60 x102 J/kg K, is initially at a temperature of 352°C. It is placed in a calorimeter that has 40.0 g of water at 20.0°C. What is the final thermal equilibrium temperature? If your answer if 100.0°C, calculate the amount of water that remains in liquid form. Treat the mass and heat capacity of the calorimeter as neglible.

  • An 870-g iron block is heated to 370 C and placed in an insulated container (of...

    An 870-g iron block is heated to 370 C and placed in an insulated container (of negligible heat capacity) containing 41.0g of water at 21.0 C. What is the equilibrium temperature of this system? The average specific heat of iron over this temperature range is 560 J/(kgxK). What is the equilibrium temperature of this system? The average specific heat of iron over this temperature range is 560 J/(kg?K).   

  • A silver block has a mass of 0.337 kg and is initially at a temperature of...

    A silver block has a mass of 0.337 kg and is initially at a temperature of 18.4° C. How much energy must be transferred to the block as heat for it to reach a final temperature of 44.2° ;C? Use csilver =235 J/kg•K for the specific heat value of silver. -3,500 J 3,500 J -1,460 J 2,040 J -2,040 J 1,460 J

  • The temperature of 2.7 kg of water is 34° C. To cool the water, ice at...

    The temperature of 2.7 kg of water is 34° C. To cool the water, ice at 0° C is added to it. The desired final temperature of the water is 11° C. The latent heat of fusion for water is 333.5 × 103 J/kg, and the specific heat capacity of water is 4186 J/(kg·C°). Ignoring the container and any heat lost or gained to or from the surroundings, determine how much mass m of ice should be added. m =  kg

  • An 825 g iron block is heated to 352°C and placed in an insulated container (of...

    An 825 g iron block is heated to 352°C and placed in an insulated container (of negligible heat capacity) containing 40.0 g of water at 20.0°C. The following may be useful: specific heat of water = 4186 J/(kg K); specific heat of water vapor = 2090 J/(kg K); specific heat of iron = 560 J/(kg K); latent heat of vaporization for water = 2.26 x 106 J/kg. a. Is the final temperature less than, equal to, or larger than 100°C?...

  • An 825 g iron block is heated to 352°C and placed in an insulated container (of...

    An 825 g iron block is heated to 352°C and placed in an insulated container (of negligible heat capacity) containing 40.0 g of water at 20.0°C. The following may be useful: specific heat of water = 4186 J/(kg K); specific heat of water vapor = 2090 J/(kg K); specific heat of iron = 560 J/(kg K); latent heat of vaporization for water = 2.26 x 106 J/kg. Is the final temperature less than, equal to, or larger than 100°C? You...

  • The temperature of 2.26 kg of water is 34 °C. To cool the water, ice at...

    The temperature of 2.26 kg of water is 34 °C. To cool the water, ice at 0 °C is added to it. The desired final temperature of the water is 11 °C. The latent heat of fusion for water is 33.5 × 104 J/kg, and the specific heat capacity of water is 4186 J/(kg·C°). Ignoring the container and any heat lost or gained to or from the surroundings, determine how much mass m of ice should be added.

  • An 810-g iron block is heated to 400 ∘C and placed in an insulated container (of...

    An 810-g iron block is heated to 400 ∘C and placed in an insulated container (of negligible heat capacity) containing 38.0 g of water at 25.0 ∘C. What is the equilibrium temperature of this system? The average specific heat of iron over this temperature range is 560 J/(kg⋅K).

  • An 900-g iron block is heated to 380 ∘C and placed in an insulated container (of...

    An 900-g iron block is heated to 380 ∘C and placed in an insulated container (of negligible heat capacity) containing 36.0 g of water at 20.0 ∘C. What is the equilibrium temperature of this system? The average specific heat of iron over this temperature range is 560 J/(kg⋅K).

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT