Question

Two masses, M1 and M2 are attached to a mass-less string (see picture). When released from...

Two masses, M1 and M2 are attached to a mass-less string (see picture). When released from rest, the two masses move with acceleration a = 0.70 g in a clockwise direction. What is the ratio M1/M2 equal to?

0 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
Two masses, M1 and M2 are attached to a mass-less string (see picture). When released from...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • An Atwood machine consists of two masses m1 and m2 (with m1 > m2 ) attached...

    An Atwood machine consists of two masses m1 and m2 (with m1 > m2 ) attached to the ends of a light string that passes over a light, frictionless pulley. When the masses are released, the mass m1 is easily shown to accelerate down with an acceleration a = g*(m1+m2)/)m1−m2 Suppose that m and are measured as m1 = 100 +- 1 gram and m2 = 50 +- 1 gram. Derive a formula of uncertainty in the expected acceleration in...

  • An Atwood machine consists of two masses m1 and m2 (with m1 > m2) attached to the ends of a light string that passes over a light

    An Atwood machine consists of two masses m1 and m2 (with m1 > m2) attached to the ends of a light string that passes over a light, frictionless pulley. When the masses are released, the mass m1 is easily shown to accelerate down with an accelerationSuppose that m1 and m2 are measured as m1=100±1 gram and m2=50±1 gram. Derive a formula of the uncertainty in the expected acceleration in terms of the masses and their uncertainties, and then calculate δα for...

  • Two masses M1 2 kg and M2-4 kg are attached by a string as shown. They...

    Two masses M1 2 kg and M2-4 kg are attached by a string as shown. They start from rest and move with no friction until they reach a velocity of 6.5 m/s. When do they reach that speed, in s? Part A 0.68 O 4.3 O 2.0 O1.4 O 3.3 Submit My Answers Give Up

  • Two blocks of mass m1 and m2 > m1 are drawn above.

    Two blocks of mass m1 and m2 > m1 are drawn above. The block m1 sits on a frictionless inclined plane tipped at an angle θ with the horizontal as shown. Block m2 is connected to mı by a massless unstretchable string that runs over a massless, frictionless pulley to hang over a considerable drop. At time t = 0 the system is released from rest. a) Draw a force/free body diagram for the two masses. b) Find the magnitude of the...

  • Two blocks with different masses m1 and m2 and m1 is larger than m2. They are...

    Two blocks with different masses m1 and m2 and m1 is larger than m2. They are attached to either end of a light rope that passes over a light, frictionless pulley suspended from the ceiling. The mass are released from rest, and the more massive one starts to descend. After this block has descended 1.6 m, its speed is 2.2 ms-1. If the total mass is 4.1 kg, what is the mass of the heavier block m1 (unit is kg)?...

  • Two masses M1=2kg and M2 are attached by a massless cord over a solid pulley wheel...

    Two masses M1=2kg and M2 are attached by a massless cord over a solid pulley wheel of mass M=4kg, and radius R=5cm. Static Friction between the cord and the pulley makes the pulley rotate counter-clockwise when the system is released from rest, M1 accelerates with a magnitude of 3.92 m/s2. a) Draw and label the forces acting on the two blocks, and the pulley. (6 points) b) Find the tension in the cord between the pulley and M1 (6 points)...

  • 2. Atwood's Table with Two Hanging Masses You have table of width L, masses m1, m2,...

    2. Atwood's Table with Two Hanging Masses You have table of width L, masses m1, m2, and m3, two frictionless pulleys, and ideal string. Placing m2 on the table, you attach a bit of string to mass m1 the left pulley, to the left side of m2. Similarly, you hang mass m3 from the right side of m2 using the pulley on the right side of the table. The coefficient of friction of the table is mu. The acceleration of...

  • Two blocks of masses m1 and m2 are connected by a light cord that passes over...

    Two blocks of masses m1 and m2 are connected by a light cord that passes over a pulley of mass M, as shown. Block m2 slides on a frictionless horizontal surface. The blocks and pulley are initially at rest. When m1 is released, the blocks accelerate and the pulley rotates. The total angular momentum of the system of the two blocks and the pulley relative to the axis of rotation of the pulley isthe same at all times.proportional to I1,...

  • Two blocks with mass M1 and M2 are arranged as shown with M sitting on an inclined plane

    Two blocks with mass M1 and M2 are arranged as shown with M sitting on an inclined plane and connected with a massless unstretchable string running over a massless, frictionless pulley to M2, which is hanging over the ground. The two masses are released initially from rest. The inclined plane has coefficients of static and kinetic friction μs and μk respectively where the angle θ is small enough that mass M1 , would remain at rest due to static friction if...

  • The two masses "m1" and "m2" shown in the figure connected by a massless string and...

    The two masses "m1" and "m2" shown in the figure connected by a massless string and are being dropped by a constant horizontal force F a rough horizontal surface. F = 100 N, m1=10 kg, m2=15 kg coefficient kinetic friction between each mass and M_k= 0.2 expression: M2-->M1--> F Questions: 1) Calculate the friction force on M2 2) Calculate the acceleration of the system of the 2 masses 3) Calculate the tension T in the string. H Mz mi

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT