Question

A 50 g piece of aluminum metal with an initial temperature of 120 °C is dropped...

A 50 g piece of aluminum metal with an initial temperature of 120 °C is dropped into 100 g of water, with an initial temperature of 20 °C, in a perfectly insulated calorimeter. The final temperature of the metal and water is 44.41 °C. What is the specific heat capacity (c) of aluminum?

c=q/mΔT

Solve with above equation (i really need to know the steps for this question as i don't have to answer with these numbers but with other numbers i just need to understand how to do it.Thank you)

0 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
A 50 g piece of aluminum metal with an initial temperature of 120 °C is dropped...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A 329-g piece of metal at 120°C is dropped into a cup containing 460 g of...

    A 329-g piece of metal at 120°C is dropped into a cup containing 460 g of water at 7°C. The final temperature of the system is measured to be 34°C. What is the specific heat of the metal, assuming no heat is exchanged with the surroundings or the cup? The specific heat of water is 4190 J/(kg∙K). Answer in two decimal places.

  • A piece of copper metal is initially at 83.0°C. It is dropped into a coffee cup...

    A piece of copper metal is initially at 83.0°C. It is dropped into a coffee cup calorimeter containing 30.0 9 of water at a temperature of 10.0°c. After stirring, the final temperature of both copper and water is 25.0°c. Assuming no heat losses, and that the specific heat (capacity) of water is 4.18 J/(g.), what is the heat capacity of the copper in J/K?

  • 3. A75.0 g piece of copper metal is initially at 100°C. It is dropped into a...

    3. A75.0 g piece of copper metal is initially at 100°C. It is dropped into a coffee cup calorimeter containing 75.0 g of water a a rature of 20.0°c. Assuming that the only heat exchange is between the copper metal and the water (no heat is given to the calorimeter), what is the final temperature of the water. Specific heat of copper 0.387 J/goC

  • 6. A piece of 155.0 g aluminium metal at 120°C was placed in a constant pressure...

    6. A piece of 155.0 g aluminium metal at 120°C was placed in a constant pressure calorimeter of negligible heat capacity containing 300.0 g of water at 20°C. Calculate the final temperature of the system (the aluminium metal and the water) in °C: given the specific heat of aluminium metal = 0.90 J/g °C, and that of water 4.184 J/g °C

  • 9. A 48.8 g piece of an unknown metal was heated to 99.8°C, then dropped into...

    9. A 48.8 g piece of an unknown metal was heated to 99.8°C, then dropped into a coffee cup calorimeter containing 40.0 g of water at 26.3°C The temperature of the water increased to 30.2°C. How much heat flowed into the water? What is the specific heat of the unknown metal?

  • A 29.3 g piece of metal is heated to 97 degree C and dropped into a...

    A 29.3 g piece of metal is heated to 97 degree C and dropped into a calorimeter containing 50.0 g of water (specific heat capacity of water is 4.18 J/g degree C) initially at 22.9 degree C. The empty calorimeter has a heat capacity of 125 J/K. the final temperature of the water is 25.96 degree C. Ignoring significant figures., calculate the specific heat of the metal. A) 0.481 J/gK. B) 0.361 J/gK C) 0.120 J/gK D) 0.300 J/gK E)...

  • A 92.5 g piece of aluminum (which has a molar heat capacity of 24.03]/°C-mol) is heated...

    A 92.5 g piece of aluminum (which has a molar heat capacity of 24.03]/°C-mol) is heated to 624°C and dropped into a calorimeter containing water (specific heat capacity of water is 4.18 J/g°C) initially at 19.2°C. The final temperature of the water is 135.2°C. Ignoring significant figures, calculate the mass of water in the calorimeter.

  • A 160 g block of aluminum heated to 120 °C is dropped into a 350 g...

    A 160 g block of aluminum heated to 120 °C is dropped into a 350 g copper calorimeter container containing 420 g of water. If the initial temperature of the calorimeter and the water is 25.0°C, what is the final equilibrium temperature of the system?

  • b. A 92.5 g piece of aluminum (which has a molar heat capacity of 24.03 J/°C-mol)...

    b. A 92.5 g piece of aluminum (which has a molar heat capacity of 24.03 J/°C-mol) is heated to 621 and dropped into a calorimeter containing water (specific heat capacity of water is 1.10 MB initially at 19.2°C. The final temperature of the water is 135.2°C. Ignoring significant figures, calculate the mass of water in the calorimeter.

  • 7. A piece of metal weighing 90.3 grams and at an initial temperature of 99.0°C was...

    7. A piece of metal weighing 90.3 grams and at an initial temperature of 99.0°C was dropped into a beaker containing 78.2 g of water whose initial temperature is 21.0°C. The final temperature of the metal and water was 29.0°C. Calculate the specific heat of metal. (Specific heat of water = 4.184 J/g.K) A. 0.372 B. 0.123 C. 0.886 D. 0.534 E. 0.414

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT