Question
an automobile is modeled as shown. derive the required matrices
mass 3 k4 k2 X2. m2 m1 k3 k1 an automobile is modeled as shown. derive the mass matrix and matrix of stiffness
0 0
Add a comment Improve this question Transcribed image text
Answer #1

please give upvote if you like my answer and can ask any doubts in comment section.

thank you.

Mu K7 2

Add a comment
Know the answer?
Add Answer to:
Mass 3 k4 k2 X2. m2 m1 k3 k1 an automobile is modeled as shown. derive the mass matrix and matrix...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • An automobile is modeled as shown. Derive the equations of motion using Newton's second law of...

    An automobile is modeled as shown. Derive the equations of motion using Newton's second law of motion. (20 pts) . Mass = M, mass moment of inertiaJG k2 C2 C2 F2 x2 m1 m2

  • Given condition: k1=k2=k3=k4=k5=k,F3=P, and nodes 1,2,5 are fixed Decision a.Global stiffness matrix b. Displacement of nodes...

    Given condition: k1=k2=k3=k4=k5=k,F3=P, and nodes 1,2,5 are fixed Decision a.Global stiffness matrix b. Displacement of nodes 3 and 4 c. Reaction force at nodes 1,2,5 d.Internal force of spring 2,4,5 Oh, and I would appreciate it if you could tell the answer using computer typing instead of handwriting. Because I don't know the cursive If it is difficult, I would appreciate it if you could respond in a convenient way. 1.7 한 스프링계가 아래와 같다. k2 ki -F3 Amino k4...

  • Mechanical vibration subject 3. a. Consider the system of Figure 3. If C1 = C2 =...

    Mechanical vibration subject 3. a. Consider the system of Figure 3. If C1 = C2 = C3 = 0, develops the equation of motion and predict the mass and stiffness matrices. Note that setting k3 = 0 in your solution should result in the stiffness matrix given by [ky + kz -k2 kz b. constructs the characteristics equation from Question 3(a) for the case m1 = 9 kg, m2 = 1 kg, k1 = 24 N/m, k2 = 3 N/m,...

  • For a mass-spring system shown in the figure below. Write the dynamic equations in matrix form...

    For a mass-spring system shown in the figure below. Write the dynamic equations in matrix form and find the natural frequencies for this system, eigen values, eigen vectors and mode shapes assuming: m1=1 kg, m2=4 kg, k1=k3=10 N/m, and k2=2 N/m. / ر2 دی) x1(0) x2(0) K3 K1 W K2 mi W4 m2 (-?

  • M1 m2 Figure 1: 2dof 1. Consider the system above. Derive the equation of motion and calculate th...

    m1 m2 Figure 1: 2dof 1. Consider the system above. Derive the equation of motion and calculate the mass and stiffness matrices Note that setting k30 in your solution should result in the stiffness matrix given by Eq. (4.9). a. Calculate the characteristic equation from problem 4.1 for the case m1-9 kg m2-1 kg ki-24 N/m 2 3 N/m k 3 N/m and solve for the system's natural frequencies. b. Calculate the eigenvectors u1 and u2. c. Calculate 띠(t) and...

  • Here we consider the two masses m1 and m2 connected this time by springs of stiffnesses...

    Here we consider the two masses m1 and m2 connected this time by springs of stiffnesses k1, k2 and k3 as shown in the figure below. The movement of each of the 2 masses relative to its position of static equilibrium is designated by x1(t) and x2(t). 1. Demonstrate that the differential equation whose unknown is the displacement x1(t) is written as follows: 2. Determine the second differential equation whose unknown is the displacement x2(t). 3. Determine the free oscillatory...

  • We consider here, the two masses m1 and m2 connected this time by springs of stiffnesses...

    We consider here, the two masses m1 and m2 connected this time by springs of stiffnesses k1, k2 and k3 as shown in the figure below. We denote by x1(t) and x2(t) the movement of each of the 2 masses relative to its position of equilibrium static. 1. Prove that the differential equation whose unknown is the displacement x1(t) is written in the following form: (3 points) 2. Deduce the second differential equation whose unknown is the displacement x2(t) (3...

  • We consider here, the two masses m1 and m2 connected this time by springs of stiffnesses...

    We consider here, the two masses m1 and m2 connected this time by springs of stiffnesses k1, k2 and k3 as shown in the figure below. We denote x1 (t) and x2 (t) as the movement of each of the 2 masses relative to its position of equilibrium static. 1) Prove that the differential equation whose unknown is the displacement is written in the following form: 2) Deduce the second differential equation whose unknown is the displacement 3) Determine the...

  • Differentiel equations We consider here, the two masses m1 and m2 connected this time by springs...

    Differentiel equations We consider here, the two masses m1 and m2 connected this time by springs of stiffnesses k1, k2 and k3 as indicated in the figure below. We denote by x1 (t) and x2 (t) the movement of each of the 2 masses relative to its static equilibrium position. 1. Prove that the differential equation whose unknown is the displacement x1 (t) is written in the following form: 2. Deduce the second differential equation whose unknown is the displacement...

  • 2: An automobile is traveling on a rough road (1) Draw the free-body diagrams of the...

    2: An automobile is traveling on a rough road (1) Draw the free-body diagrams of the two masses and set up the equations of motion using the vertical displacements of the two masses. Note that the base excitation function y(t) is also in the vertical direction. Put the equations in matrix form Identify the mass matrix and stiffness matrix (2) Solve the structural eigenvalue problem to find the natural frequencies and mode kN shapes considering such data: m1 1000 kg,...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT