Question

ME 3-106 a) in a thermal power plant, steem KE and PE, show the change e steam from the turbine enters the at the circulated
0 0
Add a comment Improve this question Transcribed image text
Answer #1

Given dala- Temperata 1 ot.the ula℡ Ti- 26a →?nle r Turbine 30 C 舞3sc 2 In Condemo See heat aboosbed 4.1.芍hyリ cepwa、 14.1 a)s κ 4-18x(35-30) 1は,6 Wine outp heal e +icien heat Auplled hear suppliedQs SX lo 67小 no s

Add a comment
Know the answer?
Add Answer to:
ME 3-106 a) in a thermal power plant, steem KE and PE, show the change e steam from the turbine enters the at the circulated through the condenser and exits at required control volume for the ana...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A Rankine Cycle based steam power plant produces 200 MW of power. Steam exits the boiler...

    A Rankine Cycle based steam power plant produces 200 MW of power. Steam exits the boiler at 3 MPa and 500° C. The turbine exit is at 40 kPa. Isentropic efficiencies of the turbine and pump are 75% and 70% respectively. Show the cycle on a T-s diagram Calculate the mass flow rate of steam Determine the heat transfer rates in the boiler and condenser in MW Determine the cycle efficiency Determine the mass flow rate of the condenser cooling...

  • 3-40 In the condenser of a steam power plant the steam from the turbine enters the...

    3-40 In the condenser of a steam power plant the steam from the turbine enters the condenser at 0.10 bar with a quality of 95 percent and leaves at the same pressure as a saturated liquid. The steam is condensed by transferring heat to a stream of cooling water which enters at 1.3 bars and 5°C and leaves the heat exchanger at 1.2 bars and 25°C·The environmental temperature is 5°C. Determine a. the change in stream availability (exergy) of the...

  • Superheated steam at 20 MPa, 560oC enters the turbine of a vapor power plant. The pressure...

    Superheated steam at 20 MPa, 560oC enters the turbine of a vapor power plant. The pressure at the exit of the turbine is 0.7 bar, and liquid leaves the condenser at 0.4 bar at 75oC. The pressure is increased to 20.1 MPa across the pump and the specific enthalpy is 338.14 kJ/kg. The turbine isentropic efficiency is 81%. Cooling water enters the condenser at 20oC with a mass flow rate of 70.7 kg/s and exits the condenser at 38oC. For...

  • The condenser downstream of the turbine in a large Rankine cycle power plant is constructed of...

    The condenser downstream of the turbine in a large Rankine cycle power plant is constructed of 30,000 25-mm tubes. The steam condenses at 50 ºC with a heat transfer coefficient of 9,000 W/m2 ·K on the outside the tubes. The cooling water enters the tube side of the condenser at 20 ºC at a flow rate of 17,000 kg/s. For a 1000 MW (net) power output and a cycle thermal efficiency of 42%, determine: a. the cooling rate required (in...

  • Steam is the working fluid in a simple, ideal Rankine cycle. Saturated vapor enters the turbine...

    Steam is the working fluid in a simple, ideal Rankine cycle. Saturated vapor enters the turbine at 8 MPa and saturated liquid exits the condenser at a pressure of 8 kPa. The net power output of the cycle is 100 MW. Determine for the cycle: i. Thermal efficiency ii. Back work ratio iii. Mass flow-rate of the steam in kg/h iv. Rate of heat transfer to the working fluid as it passes through the boiler in MW v. Rate of...

  • Thermo (25) 7. A steam power plant operates on the Rankine cycle with steam entering the...

    Thermo (25) 7. A steam power plant operates on the Rankine cycle with steam entering the high pressure turbine at 1500 psi, 1000'C with a mass flow rate of 5x10lb/hr. The steam exits the high pressure turbine at 90 psi, 350°F where the steam is then sent back to the boiler and reheated to 900°F before expanding through the low pressure turbine to 1 psi. Cooling water enters the condenser from a lake at 65°F and exits at 90°F Assume...

  • . A steam power plant that operates on Rankine cycle has a net power output of...

    . A steam power plant that operates on Rankine cycle has a net power output of 45 MW. Steam enters the turbine at 7 MPa and 500o C and is cooled in the condenser at a pressure of 10 kPa by running cooling water from a sea through the tubes of the condenser at rate of 2000 kg/s. Show the cycle on T‐s diagram with respect to saturation line, and determine (a) the thermal efficiency of the cycle, (b) the...

  • A nuclear power plant based on the Rankine cycle operates with a boiling-water reactor to develop...

    A nuclear power plant based on the Rankine cycle operates with a boiling-water reactor to develop net cycle power of 3 MW. Steam exits the reactor core at 100 bar, 52O degree C and expands through the turbine to the condenser pressure of 1 bar. Saturated liquid exits the condenser and is pumped to the reactor pressure of l00 bar. Isentropic efficiencies of the turbine and pump are 81% and 78%, respectively. Cooling water enters the condenser at 15 degree...

  • Consider a 210-MW steam power plant that operates on a simple ideal Rankine cycle. Steam enters...

    Consider a 210-MW steam power plant that operates on a simple ideal Rankine cycle. Steam enters the turbine at 10 MPa and 500°C and is cooled in the condenser at a pressure of 10 kPa. Assume an isentropic efficiency of 85 percent for both the turbine and the pump. (a) the quality of the steam at the turbine exit (b) the thermal efficiency of the cycle (c) the mass flow rate of the steam.

  • Water is the working fluid in a Rankine cycle. Superheated vapor enters the turbine at 10...

    Water is the working fluid in a Rankine cycle. Superheated vapor enters the turbine at 10 Mpa, 560 C with a mass flow rate of 7.8kg/s and exits at 8 kPa. Saturated liquid enters the pump at 8 kPa. The isentropic turbine efficiency is 85%, and the isentropic pump efficiency is 85%. Cooling water enters the adiabatic condenser at 18 C and exits at 36 C with no significant change in pressure and assuming the specific heat of the cooling...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT