Question

Silicon at at T-300 K contains acceptor atoms at a concentration of Na-5x10A15 cmA-3. Donor atoms are added forming an n type

0 0
Add a comment Improve this question Transcribed image text
Answer #1

5지 crn- after doping shift in Fesmi level- is Given as 13 adde dono Artom b) Before st wos ounter doped Concent sation of 、2

Add a comment
Know the answer?
Add Answer to:
Silicon at at T-300 K contains acceptor atoms at a concentration of Na-5x10A15 cmA-3. Donor atoms are added forming an n type compensated(counter doped) semiconductor such that the fermi level is 0.2...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Silicon at at T-300 K contains acceptor atoms at a concentration of Na-5x10A15 cmA-3. Donor atoms are added forming an n type compensated(counter doped) semiconductor such that the fermi level is 0.2...

    Silicon at at T-300 K contains acceptor atoms at a concentration of Na-5x10A15 cmA-3. Donor atoms are added forming an n type compensated(counter doped) semiconductor such that the fermi level is 0.215 eV below the conduction band edge 4. a. What concentration of donor atoms were added. b. What were the concentration of holes and electrons before the silicon was counterdoped c. What are the electron and hole concentrations after the silicon was counter doped. Silicon at at T-300 K...

  • P3. (a) Determine the position of the Fermi level with respect to the intrinsic Fermi level in silicon at T =...

    P3. (a) Determine the position of the Fermi level with respect to the intrinsic Fermi level in silicon at T = 300'K that is doped with phosphors atoms at a concentration of 1015 cm. (b) Repeat (a) if the silicon is doped with boron atoms at a concentration of 10'5 cm3. (c) Calculate the electron concentration in the silicon for parts (a) and (b) P1. For the Boltzmann approximation to be valid for a semiconductor, the Fermi level must be...

  • Define the majority carrier concentration in an n-type Si semiconductor in terms of the conduction band...

    Define the majority carrier concentration in an n-type Si semiconductor in terms of the conduction band edge energy E, and the Fermi energy E. 1. 2 marks Find an expression for Ee -Ef, i.e, the difference between the conduction band edge energy and the Fermi energy in terms of the donor concentration ND. 4 marks Determine the concentration of donor impurity atoms that must be added to silicon so that Ec- E0.2 eV. 3 marks

  • 1. Define the majority carrier concentration in an n-type Si semiconductor in terms of the conduction...

    1. Define the majority carrier concentration in an n-type Si semiconductor in terms of the conduction band edge energy Ec and the Fermi energy Ep 2 marks Find an expression for Ec - Ep, i.e, the difference between the conduction band edge energy and the Fermi energy in terms of the donor concentration Np. 4 marks Determine the concentration of donor impurity atoms that must be added to silicon that Ec Ef = 0.2 eV So 4 marks

  • Consider a sample of silicon at 300 K in which the Fermi level is found 0.22...

    Consider a sample of silicon at 300 K in which the Fermi level is found 0.22 eV above the top of the valence band. a) What type of semiconductor is this sample? b) Sketch the band diagram, labelling Ev, E., E. EF, E. – EF, EF - Ec, and Ea or Ed as applicable. c) What is the carrier concentration of electrons and holes in this sample at thermal equilibrium?

  • 3. Silicon samples with band-gas 1.1 eV at 300 Kelvin, are doped at four different levels...

    3. Silicon samples with band-gas 1.1 eV at 300 Kelvin, are doped at four different levels and have the properties listed below. Case 1: Case 2: Case 3: Case 4: Ex-Ey = 0.15 eV Ef-Ey=0.88 eV EF-Ey = 0.55 eV Ex-Ey = 1.09 eV The four cases above show the position of the Fermi Level Er relative to the valence band edge Ev.at dilterent doping levels. a) identify each sample as degenerate and nondegenerate. b) which nondegenerate case shows heavy...

  • Si sample doped with donors 101°cm-3 initially at room temperature 300 °K (n 31010 cm. Later it i...

    Si sample doped with donors 101°cm-3 initially at room temperature 300 °K (n 31010 cm. Later it is excited optically as such 1019 cm-3electron-hole pairs are produced in one second uniformly in the sample. Si band gap energy isEg-1.11 eV and the recombination for hole electron life-time10 μs. Hint may use results of question 1 above. Draw appropriate figures and mark related levels! a) Calculate the equilibrium Fermi level with respect to conduction band edge Ec b) Calculate the equilibrium...

  • EENG 245 Physical electronics HW 1 1) The NaCl crystal is cubic, and can be described...

    EENG 245 Physical electronics HW 1 1) The NaCl crystal is cubic, and can be described as follows. Na atoms sit at the corners and faces of a cube, and Cl atoms sit in between two Na atoms. This means that a Clatom is found half-way along each of the cube edges, and there is a Cl in the center of the cube. (We could also have described the lattice by interchanging Na and Cl in the description above.) Another...

  • **Please Show All The Steps** As I mentioned in the class assume that we have a...

    **Please Show All The Steps** As I mentioned in the class assume that we have a GaAs (Gallium Arsenide) sample which was doped with excessive As to produce a resistivity of 0.05 Ωm. Owing to the presence of an unknown acceptor impurity the actual resistivity was 0.06Ωm, the sample remaining n-type. What were the concentrations of donors and acceptors present? (Please take μe=0.85 m2/Vs and assume that all impurity atoms are ionized) PHYSICAL CONSTANTS Avagadro's Number NA- 6.02 x 10*23...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT