Question

For the system with the following open loop transfer function, G(S) (05s+1 Design a lead compensator so that the velocity err

design a lead compensator

0 0
Add a comment Improve this question Transcribed image text
Answer #1

Leod Compensates des70 aの f. 2. Code plot of 20 SCH 0-1 92.86. | Ч 0.5 104. o3 16 0109.2 7 -кЧ.os |.coo |า 9.7าfoumd to be u me need to eualuejz φ, of the compensato So The maximumphaneet the Compensar sinul o. 2» The. gain (k here L(a)

Add a comment
Know the answer?
Add Answer to:
design a lead compensator For the system with the following open loop transfer function, G(S) (05s+1 Design a lead c...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • urgent! II Lead-Lag Controller Design A plant has the open-loop transfer function with unity feedback: 20(s +1) G, (s) s(10s +D(0.1258 +D(0.05s +1)(0.02s +1) Design a phase lag-lead compensator th...

    urgent! II Lead-Lag Controller Design A plant has the open-loop transfer function with unity feedback: 20(s +1) G, (s) s(10s +D(0.1258 +D(0.05s +1)(0.02s +1) Design a phase lag-lead compensator that satisfies the following specifications must by the compensated system 1. The steady-state error for a unit ramp input must be 0.002; 2. The compensated phase margin must be approximately 48; must be approximately 25 rad/sec. II Lead-Lag Controller Design A plant has the open-loop transfer function with unity feedback: 20(s...

  • Question 6 Consider the system shown in Figure 4. The open-loop transfer function is given by...

    Question 6 Consider the system shown in Figure 4. The open-loop transfer function is given by G() = - 2 (3+1)(0.59+1) Figure 4 Control diagram for Question 6 With the help of Matlab, design a compensator ab, design a compensator so that the static velocity error constant Kv is 5 sec, the phase margin is at least 45°, and the gain margin is at least 10 dB. [20]

  • Consider the system shown as below. Draw a Bode diagram of the open-loop transfer function G(s).

    1 Consider the system shown as below. Draw a Bode diagram of the open-loop transfer function G(s). Determine the phase margin, gain-crossover frequency, gain margin and phase-crossover frequency, (Sketch the bode diagram by hand) 2 Consider the system shown as below. Use MATLAB to draw a bode diagram of the open-loop transfer function G(s). Show the gain-crossover frequency and phase-crossover frequency in the Bode diagram and determine the phase margin and gain margin. 3. Consider the system shown as below. Design a...

  • Determine the transfer function of the phase-lead compensator that can be used with the follow open-loop...

    Determine the transfer function of the phase-lead compensator that can be used with the follow open-loop transfer function in order to give a phase margin of 45° 30 G(s) = s(s+3) Include the Bode plots for the original system (G(s)) and the compensated system (Gc(s)G(s), where Gc(s) is the transfer function of the phase-lead compensator). The Bode plots must show t phase margin (use the margin command or Itiview in MATLAB).

  • 1. Given a unity feedback system with the open-loop transfer function s(0.5s +1) .design a lead c...

    1. Given a unity feedback system with the open-loop transfer function s(0.5s +1) .design a lead compensator ,0 〈 α 〈 1, such that the desired closed-loop poles at -2+2j following steps: J, by completing the (a) Find the angle deficiency from the compensator, (b)Find the zero and poles of the compensator (c) Find constant gain Kc. 1. Given a unity feedback system with the open-loop transfer function s(0.5s +1) .design a lead compensator ,0 〈 α 〈 1, such...

  • PD & PID controller design Consider a unity feedback system with open loop transfer function, G(s)...

    PD & PID controller design Consider a unity feedback system with open loop transfer function, G(s) = 20/s(s+2)(8+4). Design a PD controller so that the closed loop has a damping ratio of 0.8 and natural frequency of oscillation as 2 rad/sec. b) 100 Consider a unity feedback system with open loop transfer function, aus. Design a PID controller, so that the phase margin of (S-1) (s + 2) (s+10) the system is 45° at a frequency of 4 rad/scc and...

  • Problem 4. The open-loop transfer function of a unity feedback system is 20 G(s) S+1.5) (s +3.5) ...

    Problem 4. The open-loop transfer function of a unity feedback system is 20 G(s) S+1.5) (s +3.5) (s +15) (a) Design a lag-lead compensator for G(s) using root locus so that the closed-loop system satisfies the design specifications. (b) Design a PID compensator for G(s) using root locus so that the closed-loop system satisfies the design specifications. Design specifications -SSE to a unit step reference input is less than 0.02. Overshoot is less than 20%. Peak time is less than...

  • Problem 4. The open-loop transfer function of a unity feedback system is: 20 (s+1.5)(s 3.5) (s 15...

    Problem 4. The open-loop transfer function of a unity feedback system is: 20 (s+1.5)(s 3.5) (s 15) G(s) (a) Design a lag-lead compensator for G(s) using root locus so that the closed-loop system satisfies the design specifications (b) Design a PID compensator for G (s) using root locus so that the clos ed-loop system satisfies the design specifications. Design specifications .SSE to a unit step reference input is less than 0.02. Overshoot is less than 20% Peak time is less...

  • The transfer function of the given physical system is 2500 Gp(s)-T-1000 Part 3 1. Frequency response (a) Draw the bode...

    The transfer function of the given physical system is 2500 Gp(s)-T-1000 Part 3 1. Frequency response (a) Draw the bode plot of open-loop transfer function when K (b) Use bode plot of open-loop transfer function to determine the type of system (do not use transfer function) (c) For what input the system will have constant steady-state error (d) for the unit input in item (c) calculate the constant steady-state error.(Use bode plot to calculate the error.) (e) Design a lead...

  • 4. Referring to the closed-loop system shown as below, design a lead compensator Ge(s) such that...

    4. Referring to the closed-loop system shown as below, design a lead compensator Ge(s) such that the phase-margin is 45o, gain margin is not less than 8dB, and the static velocity error constant Ky is 4.0 sec1. Plot unit-step and unit-ramp response curves of the compensated system with MATLAB.

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT