Question

Given that the initial rate constant is 0.0180s−1 at an initial temperature of 30 ∘C ,...

Given that the initial rate constant is 0.0180s−1 at an initial temperature of 30 ∘C , what would the rate constant be at a temperature of 180. ∘C for the same reaction described in Part A?

Express your answer with the appropriate units.

(I solved this and got 2.01, which is wrong, but I'm not exactly sure why).

(Reaction A was: The activation energy of a certain reaction is 44.3 kJ/mol . At 30 ∘C , the rate constant is 0.0180s−1 . At what temperature in degrees Celsius would this reaction go twice as fast?) I already solved Part A, so I do not need the answer to this. I am also confused about the units for this equation. What would the units be, and why?

0 0
Add a comment Improve this question Transcribed image text
Answer #1

Rate constant at temperature 180.oC = 6.08 s-1

Explanation

According to Arrhenius law,

ln(k2 / k1) = (Ea / R) * (1/T1 - 1/T2)

where

k1 = initial rate constant = 0.0180 s-1

T1 = initial temperature = 30 oC = 303 K

k2 = final rate constant

T2 = final temperature = 180. oC = 453 K

Ea = activation energy = 44.3 kJ/mol = 44.3 x 103 J/mol

R = constant = 8.314 J/mol-K

Substituting the values,

ln(k2 / 0.0180 s-1) = [(44.3 x 103 J/mol) / (8.314 J/mol-K)] * (1/303 K - 1/453 K)

ln(k2 / 0.0180 s-1) = 5.823

k2 / 0.0180 s-1 = e5.823

k2 / 0.0180 s-1 = 338

k2 = (0.0180 s-1) * (338)

k2 = 6.08 s-1

Add a comment
Know the answer?
Add Answer to:
Given that the initial rate constant is 0.0180s−1 at an initial temperature of 30 ∘C ,...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • The activation energy of a certain reaction is 44.3 kJ/mol . At 30 ∘C , the...

    The activation energy of a certain reaction is 44.3 kJ/mol . At 30 ∘C , the rate constant is 0.0180s−1 . At what temperature in degrees Celsius would this reaction go twice as fast? Express your answer with the appropriate units. I'm so confused... When I worked this problem I got 317.67 K, or 44.67 C, but they're both wrong. What am I doing wrong?

  • I need help with Part B. I got Part A wrong Part A The activation energy...

    I need help with Part B. I got Part A wrong Part A The activation energy of a certain reaction is 41.6 kJ/mol . At 20  ∘C , the rate constant is 0.0150s−1. At what temperature in degrees Celsius would this reaction go twice as fast? ANSWER IS T2= 32 Part B Given that the initial rate constant is 0.0150s−1 at an initial temperature of 20∘C , what would the rate constant be at a temperature of 120.∘C for the same...

  • Given that the initial rate constant is 0.0160s-1 at an initial temperature of 24 deg C,...

    Given that the initial rate constant is 0.0160s-1 at an initial temperature of 24 deg C, what would the rate constant be at a temperature of 100 deg C for the same reaction described in Part A? From Part A: The activation energy of a certain reaction is 31.5 kJ/mol. At 24∘C, the rate constant is 0.0160s−1. T2 = 41C Part B at an initial temperature of 24 °C, what would the rate constant be at a temperature of 100....

  • The Arrhenius equation shows the relationship between the rate constant k and the temperature T in...

    The Arrhenius equation shows the relationship between the rate constant k and the temperature T in kelvins and is typically written as k=Ae−Ea/RT where R is the gas constant (8.314 J/mol⋅K), A is a constant called the frequency factor, and Ea is the activation energy for the reaction. However, a more practical form of this equation is lnk2k1=EaR(1T1−1T2) which is mathmatically equivalent to lnk1k2=EaR(1T2−1T1) where k1 and k2 are the rate constants for a single reaction at two different absolute...

  • Given that the initial rate constant is 0.0110s−1 at an initial temperature of 30 ∘C ,...

    Given that the initial rate constant is 0.0110s−1 at an initial temperature of 30 ∘C , what would the rate constant be at a temperature of 200. ∘C for the same reaction described in Part A? Ea = 31.8 kJ

  • The activation energy of a certain reaction is 33.6 kJ/mol . At 23  ∘C , the rate...

    The activation energy of a certain reaction is 33.6 kJ/mol . At 23  ∘C , the rate constant is 0.0150s−1. At what temperature in degrees Celsius would this reaction go twice as fast? Given that the initial rate constant is 0.0150s−1 at an initial temperature of 23  ∘C , what would the rate constant be at a temperature of 120.  ∘C for the same reaction described in Part A?

  • The Arrhenius equation shows the relationship between the rate constant k and the temperature T in...

    The Arrhenius equation shows the relationship between the rate constant k and the temperature T in kelvins and is typically written as k=Ae−Ea/RT where R is the gas constant (8.314 J/mol⋅K), A is a constant called the frequency factor, and Ea is the activation energy for the reaction. However, a more practical form of this equation is lnk2k1=EaR(1T1−1T2) which is mathmatically equivalent to lnk1k2=EaR(1T2−1T1) where k1 and k2 are the rate constants for a single reaction at two different absolute...

  • The activation energy of a certain reaction is 47.9 kJ/molkJ/mol . At 29  ∘C ∘C , the...

    The activation energy of a certain reaction is 47.9 kJ/molkJ/mol . At 29  ∘C ∘C , the rate constant is 0.0180s−10.0180s−1 . At what temperature in degrees Celsius would this reaction go twice as fast? Express your answer with the appropriate units. T2= Given that the initial rate constant is 0.0180s−10.0180s−1 at an initial temperature of 29  ∘C ∘C , what would the rate constant be at a temperature of 170.  ∘C ∘C for the same reaction described in Part A? k2=

  • The Arrhenius equation shows the relationship between the rate constant k and the temperature T in...

    The Arrhenius equation shows the relationship between the rate constant k and the temperature T in kelvins and is typically written as k=Ae−Ea/RT where R is the gas constant (8.314 J/mol⋅K), A is a constant called the frequency factor, and Ea is the activation energy for the reaction. However, a more practical form of this equation is lnk2k1=EaR(1T1−1T2) which is mathmatically equivalent to lnk1k2=EaR(1T2−1T1) where k1 and k2 are the rate constants for a single reaction at two different absolute...

  • Part A The activation energy of a certain reaction is 34.9 kJ/mol . At 23  ∘C ,...

    Part A The activation energy of a certain reaction is 34.9 kJ/mol . At 23  ∘C , the rate constant is 0.0110s−1. At what temperature in degrees Celsius would this reaction go twice as fast? Part B Given that the initial rate constant is 0.0110s−1 at an initial temperature of 23  ∘C , what would the rate constant be at a temperature of 120.  ∘C for the same reaction described in Part A?

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT