Question

Find the Eigenvalues, Eigenvectors, If possible find an invertible matrix P, such that P-AP is in diagonalized form. -3 1 A =
0 0
Add a comment Improve this question Transcribed image text
Answer #1

Solution:

-1 -3 A = 4 3

The characteristic equation is (sum of diagonal element) A + |A = 0

2-2A9= 0

A122i V

Thus, the eigenvalues are  12 2i, 1-2/2i .

for A, = 1 +2v2i V ,   A 1I X 0

1 1-2/2i -3 3 1 2 2i 4

-2 2/21 -3 2 2 2i

. 4ar(2-2v2i y 02x (- V2i)y 0 -1+v2 2 y

\small \therefore v_{1}=\begin{pmatrix} -1+\sqrt{2}i\\ 2\\ \end{pmatrix}

for \small \lambda_{2} =1- 2\sqrt{2}i ,   A 2I X =0

1 1 2/2i -3 3 12 2i, 4

\small \begin{pmatrix} -2+2\sqrt{2}i &-3 \\ 4 & 2+2\sqrt{2}i \end{pmatrix}\begin{pmatrix} x\\ y\\ \end{pmatrix}=\begin{pmatrix} 0\\ 0\\ \end{pmatrix}

\small \therefore 4x+\left ( 2+2\sqrt{2}i \right )y=0\Rightarrow 2x+\left ( 1+\sqrt{2} i\right )y=0\Rightarrow x=\frac{-1-\sqrt{2}i}{2}y

\small \therefore v_{2}=\begin{pmatrix} -1-\sqrt{2}i\\ 2\\ \end{pmatrix}

Thus, the eigenvectors are  

\small \begin{pmatrix} -1+\sqrt{2}i\\ 2\\ \end{pmatrix}\: \: \: \: \:, \small \: \: \begin{pmatrix} -1-\sqrt{2}i\\ 2\\ \end{pmatrix}

Since the eigenvalues are distinct , \small A is diagonalisable.

Now,  

\small P=\begin{pmatrix} -1+\sqrt{2} i& -1-\sqrt{2}i\\ 2& 2 \end{pmatrix}

\small P^{-1}AP=\begin{pmatrix} -1+\sqrt{2} i& -1-\sqrt{2}i\\ 2& 2 \end{pmatrix}^{-1}\begin{pmatrix} -1 & -3\\ 4 & 3 \end{pmatrix}\begin{pmatrix} -1+\sqrt{2} i& -1-\sqrt{2}i\\ 2& 2 \end{pmatrix}

  \small =\begin{pmatrix} 1+2\sqrt{2}i & 0\\ 0 & 1-2\sqrt{2}i \end{pmatrix}

-------------------------------------------------------------------------------------

The characteristic polynomial is

\small \lambda ^{2}-\left (\mathrm{ sum\: of\: \: diagonal\: element} \right )\lambda ^{2}+\left ( \mathrm{sum\: of\: minor\: of\: diagonal\: element} \right )\lambda -\left | A \right |

\small \therefore \lambda ^{3}-5\lambda ^{2}+8\lambda -4

1,2,2

for  \small \lambda _{1}=2 , A 1I X 0

\small \begin{pmatrix} -2 & 0 &-2 \\ 1 & 0 & 1\\ 1 & 0 & 1 \end{pmatrix}\begin{pmatrix} x\\ y\\ z\\ \end{pmatrix}=\begin{pmatrix} 0\\ 0\\ 0\\ \end{pmatrix}

\small \therefore x=-z

\small \therefore v_{1}=z\begin{pmatrix} -1\\ 0\\ 1\\ \end{pmatrix}+y\begin{pmatrix} 0\\ 1\\ 0\\ \end{pmatrix}

for  \small \lambda _{2}=1,\: \: \: \: \left [ A-\lambda _{2}I \right ]X=0

\small \begin{pmatrix} -1 & 0 &-2 \\ 1 & 1 & 1\\ 1 & 0 & 2 \end{pmatrix}\begin{pmatrix} x\\ y\\ z\\ \end{pmatrix}=\begin{pmatrix} 0\\ 0\\ 0\\ \end{pmatrix}

By \small R_{2}+R_{1},\: \: \: R_{3}+R_{1}

\small \begin{pmatrix} -1 & 0 &-2 \\ 0 & 1 & -1\\ 0 & 0 & 0 \end{pmatrix}\begin{pmatrix} x\\ y\\ z\\ \end{pmatrix}=\begin{pmatrix} 0\\ 0\\ 0\\ \end{pmatrix}

\small \therefore x=-2z,\: \: \: y=z

-2 1 . v2 1

Thus, the eigenvalues and eigenvectors are

\small 1:\left \{ \begin{pmatrix} -2\\ 1\\ 1\\ \end{pmatrix} \right \}

\small 2:\left \{ \begin{pmatrix} -1\\ 0\\ 1\\ \end{pmatrix} ,\: \: \begin{pmatrix} 0\\ 1\\ 0\\ \end{pmatrix}\right \}

Since the algebraic multiplicity of each eigenvalue is same as the geometric multiplicity , \small A is diagonalisable.

\small P=\begin{pmatrix} -2 &-1 &0 \\ 1 & 0& 1\\ 1 & 1&0 \end{pmatrix}

Also,

\small P^{-1}AP=\begin{pmatrix} -2 &-1 &0 \\ 1 & 0& 1\\ 1 & 1&0 \end{pmatrix}^{-1}\begin{pmatrix} 0 &0 &-2 \\ 1& 2 &1 \\ 1& 0 & 3 \end{pmatrix}\begin{pmatrix} -2 &-1 &0 \\ 1 & 0& 1\\ 1 & 1&0 \end{pmatrix}=\begin{pmatrix} 1 & 0 &0 \\ 0& 2 & 0\\ 0 & 0 & 2 \end{pmatrix}

Add a comment
Know the answer?
Add Answer to:
Find the Eigenvalues, Eigenvectors, If possible find an invertible matrix P, such that P-AP is in...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT