Question

Question 6 of 22 Two red blood cells each have a mass of 7.35 × 10-14 kg and carry a negative charge spread uniformly over their surfaces. pulsion arising from the excess charge prevents the cells from clumping together. Once cell arries -1.,60 pC of charge and the other -3.50 pC, and each cell can be modeled as a sphere 8.20 um in diameter. What minimum relative speed o would the red blood cells ned when very far away from each other to get just touch? Ignore viscous drag from the surrounding liquid ose enough to u= m/s What is the magnitude of the maximum acceleration amax of each cell? P/A max m/s2
0 0
Add a comment Improve this question Transcribed image text
Answer #1

2 2_ 91 2 21 2 ç,029x1619 V8362 3.67 = 229,1396 19 mls(23) a= -lu u.qu2lux ltoThis may helps you. Hit like if you are satisfied with my answer .

Thank you .!?

Add a comment
Know the answer?
Add Answer to:
Question 6 of 22 Two red blood cells each have a mass of 7.35 × 10-14...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Two red blood cells each have a mass of 6.35 x 10-14 kg and carry a...

    Two red blood cells each have a mass of 6.35 x 10-14 kg and carry a negative charge spread uniformly over their surfaces The repulsion arising from the excess charge prevents the cells from clumping together. Once cell carries -2.60 pC of charge and the other-2.70 pC, and each cell can be modeled as a sphere 6.40 um in diameter What minimum relative speed v would the red blood cells need when very far away from each other to get...

  • Two red blood cells each have a mass of 4.40 × 10-14kg and carry a negative...

    Two red blood cells each have a mass of 4.40 × 10-14kg and carry a negative charge spread uniformly over their surfaces. The repulsion arising from the excess charge prevents the cells from clumping together. Once cell carries -2.20 pC of charge and the other -3.10 pC, and each cell can be modeled as a sphere 7.20 um in diameter. What minimum relative speed v would the red blood cells need when very far away from each other to get...

  • Two red blood cells each have a mass of 4.25 x 10-4 kg and carry a...

    Two red blood cells each have a mass of 4.25 x 10-4 kg and carry a negative charge spread uniformly over their surfaces The repulsion arising from the excess charge prevents the cells from clumping together. Once cell carries -2.20 pC of charge and the other-2.90 pC, and each cell can be modeled as a sphere 6.40 um in diameter. What minimum relative speed v would the red blood cells need when very far away from each other to get...

  • Two red blood cells each have a mass of 4.60 x 10-14 kg and carry a...

    Two red blood cells each have a mass of 4.60 x 10-14 kg and carry a negative charge spread uniformly over their surfaces The repulsion arising from the excess charge prevents the cells from clumping together. Once cell carries-2.40 pC of charge and the other-3-10 pc, and each cell can be modeled as a sphere 7.60 μrm in diameter. What minimum relative speed o would the red blood cells need when very far away from each other to get close...

  • Two red blood cells each have a mass of 6.85×10−14 kg and carry a negative charge...

    Two red blood cells each have a mass of 6.85×10−14 kg and carry a negative charge spread uniformly over their surfaces. The repulsion arising from the excess charge prevents the cells from clumping together. Once cell carries −1.60 pC of charge and the other −2.70 pC , and each cell can be modeled as a sphere 7.40 μm in diameter. What minimum relative speed ? would the red blood cells need when very far away from each other to get...

  • Two red blood cells each have a mass of 3.75×10−14 kg3.75×10−14 kg and carry a negative...

    Two red blood cells each have a mass of 3.75×10−14 kg3.75×10−14 kg and carry a negative charge spread uniformly over their surfaces. The repulsion arising from the excess charge prevents the cells from clumping together. Once cell carries −2.00 pC−2.00 pC of charge and the other −3.10 pC−3.10 pC, and each cell can be modeled as a sphere 8.20 μm8.20 μm in diameter. What minimum relative speed ?v would the red blood cells need when very far away from each...

  • Two red blood cells each have a mass of 5.45×10−14 kg and carry a negative charge...

    Two red blood cells each have a mass of 5.45×10−14 kg and carry a negative charge spread uniformly over their surfaces. The repulsion arising from the excess charge prevents the cells from clumping together. Once cell carries −1.80 pC of charge and the other −2.90 pC , and each cell can be modeled as a sphere 6.80 μm in diameter. What minimum relative speed ? would the red blood cells need when very far away from each other to get...

  • Two red blood cells each have a mass of 4.00×10−14 kg and carry a negative charge...

    Two red blood cells each have a mass of 4.00×10−14 kg and carry a negative charge spread uniformly over their surfaces. The repulsion arising from the excess charge prevents the cells from clumping together. Once cell carries −2.40 pC of charge and the other −2.90 pC , and each cell can be modeled as a sphere 6.80 μm in diameter. What minimum relative speed ? would the red blood cells need when very far away from each other to get...

  • Two red blood cells each have a mass of 2.85×10−14 kg and carry a negative charge...

    Two red blood cells each have a mass of 2.85×10−14 kg and carry a negative charge spread uniformly over their surfaces. The repulsion arising from the excess charge prevents the cells from clumping together. Once cell carries −2.20 pC of charge and the other −3.30 pC , and each cell can be modeled as a sphere 7.60 μm in diameter. What minimum relative speed ? would the red blood cells need when very far away from each other to get...

  • Two red blood cells each have a mass of 8.30×10−14 kg8.30×10−14 kg and carry a negative...

    Two red blood cells each have a mass of 8.30×10−14 kg8.30×10−14 kg and carry a negative charge spread uniformly over their surfaces. The repulsion arising from the excess charge prevents the cells from clumping together. Once cell carries −2.60 pC−2.60 pC of charge and the other −2.70 pC−2.70 pC, and each cell can be modeled as a sphere 7.80 μm7.80 μm in diameter. What minimum relative speed ?v would the red blood cells need when very far away from each...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT