Problem

In Chapter 4, we learned that the uncertainty principle is a powerful tool. Here we use it...

In Chapter 4, we learned that the uncertainty principle is a powerful tool. Here we use it to estimate the size of a Cooper pair from its binding energy. Due to their phonon-borne attraction, each electron in a pair (if not the pair's center of mass) has changing momentum and kinetic energy. Simple differentiation will relate uncertainty in kinetic energy to uncertainty in momentum, and a rough numerical measure of the uncertainty in the kinetic energy is the Cooper-pair binding energy. Obtain a rough estimate of the physical extent of the electron's (unknown!) wave function. In addition to the binding energy, you will need to know the Fermi energy. (As noted in Section 10.9, each electron in the pair has an energy of about EF.) Use 10-3 eV and 9.4 eV, respectively, values appropriate for indium.

Step-by-Step Solution

Request Professional Solution

Request Solution!

We need at least 10 more requests to produce the solution.

0 / 10 have requested this problem solution

The more requests, the faster the answer.

Request! (Login Required)


All students who have requested the solution will be notified once they are available.
Add your Solution
Textbook Solutions and Answers Search