Question

The electric field between two parallel plates is uniform, with magnitude 600 N/C

The electric field between two parallel plates is uniform, with magnitude 600 N/C. A proton is held stationary at the positive plate, and an electron is held stationary at the negative plate. The plate separation is 3.66 cm. At the same moment, both particles are released

 (a) Calculate the distance (in cm) from the positive plate at which the two pass each other. Ignore the electrical attraction between the proton and electron

 (b) Repeat part (a) for a sodium lon (Na+) and a chloride lon (CI-). (Give your answer In cm.)

0 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
The electric field between two parallel plates is uniform, with magnitude 600 N/C
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • The electric field between two parallel plates is uniform, with magnitude 576 N/C. A proton is...

    The electric field between two parallel plates is uniform, with magnitude 576 N/C. A proton is held stationary at the positive plate, and an electron is held stationary at the negative plate. The plate separation is 4.30 cm. At the same moment, both particles are released (a) Calculate the distance (in cm) from the positive plate at which the two pass each other. Ignore the electrical attraction between the proton and electron cm (b) Repeat part (a) for a sodium...

  • Two large parallel copper plates are 4.86 cm apart and have a uniform electric field of...

    Two large parallel copper plates are 4.86 cm apart and have a uniform electric field of magnitude E = 5.60 N/C between them (see Figure). An electron is released from the negative plate at the same time that a proton is released from the positive plate. Neglect the force of the particles on each other and find their distance from the positive plate when they pass each other.

  • Two large parallel copper plates are 6.32 cm apart and have a uniform electric field of...

    Two large parallel copper plates are 6.32 cm apart and have a uniform electric field of magnitude E = 4.41 N/C between them (see the figure). An electron is released from the negative plate at the same time that a proton is released from the positive plate. Neglect the force of the particles on each other and find their distance from the positive plate when they pass each other Positive plate P Negative plate

  • Two large parallel copper plates are 3.35 cm apart and have a uniform electric field of...

    Two large parallel copper plates are 3.35 cm apart and have a uniform electric field of magnitude E - 3.21 N/C between them (see the figure). An electron is released from the negative plate at the same time that a proton is released from the positive plate. Neglect the force of the particles on each other and find their distance from the positive plate when they pass each other. Positive plate P Negative plate Number Units

  • Two large parallel copper plates are 3.73 cm apart and have auniform electric field of...

    Two large parallel copper plates are 3.73 cm apart and have a uniform electric field of magnitude E = 7.98 N/C between them (see the figure). An electron is released from the negative plate at the same time that a proton is released from the positive plate. Neglect the force of the particles on each other and find their distance from the positive plate when they pass each other.

  • A uniform electric field exists in the region between two oppositely charged parallel plates 1.50 apart....

    A uniform electric field exists in the region between two oppositely charged parallel plates 1.50 apart. A proton is released from rest at the surface of the positively charged plate and strikes the surface of the opposite plate in a time interval 1.41×10−6 . A) Find the magnitude of the electric field. Use 1.60×10−19 for the magnitude of the charge on an electron and 1.67×10−27 for the mass of a proton. ------ N/C B)Find the speed of the proton at...

  • PLEASE NEED HELP Two large parallel copper plates are 6.31 cm apart and have a uniform...

    PLEASE NEED HELP Two large parallel copper plates are 6.31 cm apart and have a uniform electric field of magnitude E = 7.52 N/C between them (see the figure). An electron is released from the negative plate at the same time that a proton is released from the positive plate. Neglect the force of the particles on each other and find their distance from the positive plate when they pass each other.

  • A proton and an electron are released from rest at the midpoint between the plates of...

    A proton and an electron are released from rest at the midpoint between the plates of a charged parallel plate capacitor. Except for these particles, nothing else is between the plates. Ignore the attraction between the proton and the electron, and decide which particle strikes a capacitor plate first. Choose from below: a. proton b. electron c. they strike the plate at the same time  

  • A uniform electric field exists in the region between two oppositely charged parallel plates 1.59 cm...

    A uniform electric field exists in the region between two oppositely charged parallel plates 1.59 cm apart. A proton is released from rest at the surface of the positively charged plate and strikes the surface of the opposite plate in a time interval 1.59×10−6 s . Part A) Find the magnitude of the electric field. Use 1.60×10−19 C for the magnitude of the charge on an electron and 1.67×10−27 kg for the mass of a proton. __________ N/C Part B)...

  • A uniform electric field exists in the region between two oppositely charged parallel plates 1.56 cm...

    A uniform electric field exists in the region between two oppositely charged parallel plates 1.56 cm apart. A proton is released from rest at the surface of the positively charged plate and strikes the surface of the opposite plate in a time interval 1.54×10^−6 s. Part A Find the magnitude of the electric field. Use 1.60x10-19 C for the magnitude of the charge on an electron and 1.67x10-27 kg for the mass of a proton View Available Hint(s) N/C Submit...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT