Question

2.) What name do we give a thermodynamic process (on an ideal gas) in which: (a) The heat added is equal to the work done? (b) The work done by the gas is equal to the decrease in its own internal energy
0 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
2.) What name do we give a thermodynamic process (on an ideal gas) in which: (a)...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • In a certain thermodynamic process, both the temperature and volume of an ideal gas decrease. Select...

    In a certain thermodynamic process, both the temperature and volume of an ideal gas decrease. Select a correct statement. The described process may be an isobaric compression of an ideal gas The described situation happens during adiabatic compression of an ideal gas because Cp > CV This situation is not possible for an ideal gas, but may be possible for a substance that undergoes a phase transition This situation is impossible: during compression, work of external forces on the gas...

  • Part A An ideal gas expands through an adiabatic process. Which of the following statements is/are true? Check all that...

    Part A An ideal gas expands through an adiabatic process. Which of the following statements is/are true? Check all that apply. Check all that apply. The work done by the gas is negative, and heat must be added to the system. The work done by the gas is positive, and no heat exchange occurs. The internal energy of the system has increased. The internal energy of the system has decreased. SubmitHintsMy AnswersGive UpReview Part Incorrect; Try Again; 5 attempts remaining...

  • 1" Law Word Problems 1) An ideal gas is enclosed in a piston, and 1600 J...

    1" Law Word Problems 1) An ideal gas is enclosed in a piston, and 1600 J of work is done on the gas. As this happens, the intemal energy of the gas increases by only 500 J. During this process, how much heat flows into or ou of the ideal gas? Enter a positive number to indicate a heat flow into the gas or a negative number to indicate a heat flow out of the gas. 2) A system gains...

  • We have a diatomic ideal gas with a y of 5/2. It starts with an initial...

    We have a diatomic ideal gas with a y of 5/2. It starts with an initial pressure of 1kPa, an initial temperature of 100 K, and an initial volume of 10 m^3 a) The gas undergoes an adiabatic compression, halving its volume. What is its new pressure? b) What was the work done? c) What was the heat flow? d) Now, keeping pressure constant, heat is put into the gas, doubling the volume. How much heat is added? e) What...

  • Ideal Gas Process Problem natomic ideal gas is run through the cycle shown starting in state...

    Ideal Gas Process Problem natomic ideal gas is run through the cycle shown starting in state A. The temperature of the gas in state A 300 K. The cycle happens within a sealed chamber outfitted with a piston as necessary. P (Pa) A 5.00 x 105 + The Herring Cycle 1.00 x 105 + 14300k 2.00 6.00 The cycle is composed of three processes, A B, B C, and C - A. 1) For each individual process... (a) (b) Name...

  • In an engine, an almost ideal gas is compressed adiabatically (see Note below) to half its...

    In an engine, an almost ideal gas is compressed adiabatically (see Note below) to half its volume. In doing so, 2630 Joules of work is done on the gas. (a) How much heat flows into or out of the gas? (b) What is the change in internal energy of the gas? (c) Does its temperature rise or fall? Note: An adiabatic process is one that occurs without transfer of heat or matter between a thermodynamic system and its surroundings. In...

  • A quantity of a monatomic ideal gas undergoes a process in which both its pressure and...

    A quantity of a monatomic ideal gas undergoes a process in which both its pressure and volume are doubled as shown in the figure above. DATA: V0 = 0.39 m3 P0 = 12500 Pa. A. What is the change of the internal energy of the gas? B. What was the work done by the gas during the expansion? C. What amount of heat flowed into the gas during the expansion? 2Po Po 2 Vo Vo 2003 Thomson Brooks/Cole

  • A quantity of a monatomic ideal gas undergoes a process in which both its pressure and...

    A quantity of a monatomic ideal gas undergoes a process in which both its pressure and volume are doubled as shown in the figure above. DATA: V0 = 0.23 m3 P0 = 14500 Pa. What is the change of the internal energy of the gas? Tries 0/20 What was the work done by the gas during the expansion? Tries 0/20 What amount of heat flowed into the gas during the expansion? Tries 0/20 Post Discussion We were unable to transcribe...

  • In this problem, 1.20 mole of a monatomic ideal gas is initially at 318 K and...

    In this problem, 1.20 mole of a monatomic ideal gas is initially at 318 K and 1 atm. (a) What is its initial internal energy? kJ (b) Find its final internal energy and the work done by the gas when 480 J of heat are added at constant pressure. final internal energy kJ work done by the gas kJ (c) Find the same quantities when 480 J of heat are added at constant volume. finale internal energy kJ work done...

  • 400 moles of an ideal monatomic gas are kept in a cylinder fitted with a light...

    400 moles of an ideal monatomic gas are kept in a cylinder fitted with a light frictionless piston. The gas is maintained at the atmospheric pressure. Heat is added to the gas. The gas consequently expands slowly from an initial volume of 10 m3 to 15 m3. (a) Draw a P-V diagram for this process. (b) Is this thermodynamic process an isothermal expansion, an isobaric expansion or an adiabatic expansion? (c) Calculate the work done by the gas. (d) Calculate...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT