Question

Q1: Consider the RC circuit shown below, which is being driven by a function generator supplying a voltage of Vin(t), as show

0 0
Add a comment Improve this question Transcribed image text
Answer #1

= → Time constant of Roc circuit = T = Re T = 1x107x10x106 7-1 sec = 0.01 sec 10 S voltage During charging- v : Vi (1- 3) I w

Add a comment
Know the answer?
Add Answer to:
Q1: Consider the RC circuit shown below, which is being driven by a function generator supplying...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • this is a question from a review for a test. please help! An RC circuit with...

    this is a question from a review for a test. please help! An RC circuit with R = 10 Kilo-ohms and C = 40 nano-Farads is constructed to serve as an example of a first order system and as a filter. The capacitor is uncharged when the circuit is assembled. Two sources of input voltage to the circuit are possible, a DC power supply or a function generator. 1a) (6 points) • What input source would be used to determine...

  • 12. A series RC circuit is driven by a periodic square wave voltage V(t) with a period T=0.3 sec. V(t) 0 for t<0. A...

    12. A series RC circuit is driven by a periodic square wave voltage V(t) with a period T=0.3 sec. V(t) 0 for t<0. After t=0, the voltage alternates between 15 V and 0 V. Assume that R-40 , C 150 HF. We will call the voltage across the capacitor and the resistor Ve(t) and Vr(t) respectively (c) The capacitor above is now replaced by an inductor whose inductance is 0.24 H. We call the voltage across the inductor VL(t) Calculate...

  • Given is an RC circuit as shown on the right, consisting of an emf with Voltage...

    Given is an RC circuit as shown on the right, consisting of an emf with Voltage Vb, a resistor R=/k(2, a switch connected to the V circuit as illustrated and a capacitor C-/mF The switch has been in position b for a very long time (much, much longer than RC) and it is now changed to position a, what is the voltage Vc(t) as a function of time? [10pts]

  • 1. Use MultiSim program to simulate the RC circuit shown in Figures 1 using nominal resistor valu...

    1. Use MultiSim program to simulate the RC circuit shown in Figures 1 using nominal resistor value of 100Ω and 10uF capacitor. Set up the function generator for: square wave, frequency 20Hz, duty cycle 50%, offset 1V, and amplitude 1V. Use Tektronix scope to display the input source and the capacitor voltage waveforms on the same display 2. Print out your schematics and print an output showing Channels A and B 3. Use the scope cursors to measure simulated t...

  • 12. A series RC circuit is driven by a periodic square wave voltage V(t) with a period T=0.3 sec. V(t)0 for t<0. Aft...

    12. A series RC circuit is driven by a periodic square wave voltage V(t) with a period T=0.3 sec. V(t)0 for t<0. After t=0, the voltage alternates between 15 V and 0 V. Assume that R-40 , C-150 HF. We will call the voltage across the capacitor and the resistor Ve(t and Vr(t) respectively (a) Calculate the current I(t) in the circuit, the voltage Vc(t), and the power delivered by the driving source as a function of time for the...

  • Figure 3. Variable RC circuit A variable time constant circuit is shown above. The potentiometer (R2)...

    Figure 3. Variable RC circuit A variable time constant circuit is shown above. The potentiometer (R2) can change its resistance from 0 Ohms to 750 Ohms. R1 has a fixed value of 70 Ohms. The capacitor has a capacitance of 35 pF. a) Use the supplied MATLAB™ code Calc RC and function RC_Circ to find the time variation of voltage across the Capacitor, Ve, and the fixed resistor R1 for a steady voltage V1 = 5 Volts which is turned...

  • Objectives: To learn transient behavior of series RC circuits To observe of time constant and its...

    Objectives: To learn transient behavior of series RC circuits To observe of time constant and its effect on charging process of capacitor using pulse waveforms Equipment: Oscilloscope Function generator Resistors (1 k) Capacitors (1 uF) Breadboard Pre-Lab Questions A pulse is a voltage or current that changes from one level to the other and back again. If a waveform's high time equals its low time, it is called a square wave. The length of each cycle (one positive peak and...

  • You can use any software of your choice Begin by connecting the waveform generator to the...

    You can use any software of your choice Begin by connecting the waveform generator to the series combination of a 0.2uF capacitor (use a decade capacitor box) and a 1 ks resistor (use a decade resistor box). Generate a 500 Hz, 8 Vp- p square wave with a 4 Volt offset and observe this waveform on the oscilloscope's Channel 1. Monitor the voltage drop across the capacitor on Channel 2. Figure 1 shows the schematic for the RC circuit 1k...

  • Square-Wave Voltage II The "square-wave" voltage shown in the figure (Figure 1) is applied to an...

    Square-Wave Voltage II The "square-wave" voltage shown in the figure (Figure 1) is applied to an RC circuit. Sketch the shape of the instantaneous voltage across the capacitor, assuming the time constant of the circuit is equal to the period of the applied voltage.

  • Prelab Preparation: For the RC circuit shown in Figure 1, derive the modeling equation relating the output volta ge...

    Prelab Preparation: For the RC circuit shown in Figure 1, derive the modeling equation relating the output volta ge Vout to the input voltage vin. What is the transfer function? What is the time constant of the system? Vout Figure 1: RC Circuit What is the analytical step response solution in terms of vin, Rand C? For assumed values of R 1 K, and C 6.8 uF, perform a simulation using Matlab/Simulink assuming an input square wave signal of 5Vpp,...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT