Question

6. Lens 1 has a focal length of 5.00 cm and lens 2 has a focal length of 4.00 cm. Lens 1 is placed 6.00 cm to the left of Len
0 0
Add a comment Improve this question Transcribed image text
Answer #1

Given focal langth of nni in fi 5 00 (m of Lins 2 in f2 focar 4. o Cm The din tanee betwcan the m d 6.o (m Heighd of obiec RoThe obiect dlin tane of lim 2 in s- d - 8. 125-6. co) (m S2 = 2.12 S cm. The obiect in behind the Leno 2. So S2 10 magctive.

Add a comment
Know the answer?
Add Answer to:
6. Lens 1 has a focal length of 5.00 cm and lens 2 has a focal...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A converging lens L_1 has a focal length of 10 cm. A 5cm tall object is...

    A converging lens L_1 has a focal length of 10 cm. A 5cm tall object is located 15cm to the left of L_1. Construct a ray diagram indicating the position and vertical orientation of the image produced by lens L_1. Calculate this position and see that it matches your diagram. A diverging lens L_2 with a focal length of -20 cm is placed 40cm on the right of lens L_1. The image in (a) above now serves as the object...

  • Part A Two converging lenses are placed 35.5 cm apart. The focal length of the lens...

    Part A Two converging lenses are placed 35.5 cm apart. The focal length of the lens on the right is 19.5 cm and the focal length of the lens on the left is 13.0 cm. An object is placed to the left of the 13.0 cm focal-length lens. A final image from both lenses is inverted and located halfway between the two lenses. How far to the left of the 13.0 cm focal-length lens is the original object? A2 -...

  • A 5.00-cm tall candle is placed 50.0 cm to the left of a thin converging lens...

    A 5.00-cm tall candle is placed 50.0 cm to the left of a thin converging lens that has a focal length of 15.0 cm. To the right of the lens, 30.0cm away, another converging lens (focal length 20.0cm) is placed. Determine type (real/virtual), orientation (upright/inverted), location (with respect to the second lens) and height of the final image formed by the light as it passes through both lenses.

  • A 5.00-cm tall candle is placed 50.0 cm to the left of a thin converging lens...

    A 5.00-cm tall candle is placed 50.0 cm to the left of a thin converging lens that has a focal length of 15.0 cm. To the right of the lens, 30.0cm away, another converging lens (focal length 20.0cm) is placed. Determine type (real/virtual), orientation (upright/inverted), location (with respect to the second lens) and height of the final image formed by the light as it passes through both lenses.

  • An object is placed 45 cm to the left of a converging lens of focal length...

    An object is placed 45 cm to the left of a converging lens of focal length 17 cm. A diverging lens of focal length −29 cm is located 11 cm to the right of the first lens. (Consider the lenses as thin lenses). a) Where is the final image with respect to the second lens?cm b) What is the linear magnification of the final image?

  • Now, a diverging lens with focal length having a magnitude of 20 cm is placed 10...

    Now, a diverging lens with focal length having a magnitude of 20 cm is placed 10 cm to the right of the converging lens in problem that has a 2 cm tall object placed 12 cm to the left of a converging lens with focal length of magnitude 15 cm. Determine the location of the final image formed by both lenses (in relation to the diverging lens) and the magnification of the final image. State whether the final image is...

  • Optics review D. A converging and diverging lens, each of focal length of magnitude 15.0 cm,...

    Optics review D. A converging and diverging lens, each of focal length of magnitude 15.0 cm, are placed 50.0 cm apart (converging lens to the left), and a 5.0 cm tall object is placed 30.0 cm in front of the converging lens. a. Draw a diagram which shows the lenses, the object, the intermediate image, and the final image. This does NOT need to be a ray diagram! b. Determine position and height of the final image.

  • A converging lens is placed 32.0 cm to the right of a diverging lens of focal...

    A converging lens is placed 32.0 cm to the right of a diverging lens of focal length 13.0 cm. A beam of paralel light enters the diverging lens from the left, and the beam is agai parallel when it emerges from the converging lens. Calculate the focal length of the converging lens. Need Help? 24 -3 points SerCP10 23 P041.Wi My Notes Ask Your Two converging lenses, each of focal length 15.2 cm, are placed 40.9 cm apart, and an...

  • 1 A converging lens with a focal length of 12.2 cm forms a virtual image 7.9mm...

    1 A converging lens with a focal length of 12.2 cm forms a virtual image 7.9mm tall, 11 2emto right of the lens. a. Determine the position of the object. b. Determine the size of the object. Is the image upright or inverted? Are the object and image on the same side or opposite sides of the lens? c. d. 2 You want to use a lens with a focal length of magnitude 36cm with the image twice as long...

  • A diverging lens with a focal length of -19.8 cm and a converging lens with a...

    A diverging lens with a focal length of -19.8 cm and a converging lens with a focal length of 17.9 cm have a common central axis. Their separation is 37.3 cm. An object of height 1.0 cm is 28.2 cm in front of the diverging lens, on the common central axis. Find the location of the final image produced by the combination of the two lenses. Where is the image located as measured from the converging lens? Submit Answer Tries...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT