Question

A 10.9-kg object hangs in equilibrium from a string with a total length of 6.00 m and a linear mass density of μ = 0.00300 kg/m. The string is wrapped around two light frictionless pulleys that are separated by a distance of d = 2.00 m.

ton (a) Determine the tension in the string. (b) At what frequency must the string between the pulleys vibrate in order to fo

0 0
Add a comment Improve this question Transcribed image text
Answer #1

= 10.9 kg L = 6.00m (fotot lenght o) de 2.00m Y = 0.00300 keylon =9.51mls L = d+, +, = 6.00m d+ 2x, = 6 m 2+Qx, = 6 94p = $+2XX one Oseilldon) 1.50 3 hosdi ladkions (M) ट ४ 2- vedasty v=-ix =F -- + | 4/3. 61.74 0.00300 .74 161.74 4 0-00200 4 = 107. 6

Add a comment
Know the answer?
Add Answer to:
A 10.9-kg object hangs in equilibrium from a string with a total length of 6.00 m...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A string has a linear density of 6.00 × 10-3 kg/m and is under a tension...

    A string has a linear density of 6.00 × 10-3 kg/m and is under a tension of 290 N. The string is 2.3 m long, is fixed at both ends, and is vibrating in the standing wave pattern (3rd harmonic). Determine the frequency of the traveling waves that make up the standing wave.

  • In the arrangement shown below, an object can be hung from a string (with linear mass...

    In the arrangement shown below, an object can be hung from a string (with linear mass density μ = 0.002 00 kg/m) that passes over a light pulley. The string is connected to a vibrator (of constant frequency f), and the length of the string between point P and the pulley is L = 2.30 m. When the mass m of the object is either 9.0 kg or 16.0 kg, standing waves are observed; no standing waves are observed with...

  • In the arrangement shown in the figure below, an object of mass m =4.00 kg hangs...

    In the arrangement shown in the figure below, an object of mass m =4.00 kg hangs from a cord around a light pulley. The length of the cord between point P and the pulley is L = 2.00 m. (Ignore the mass of the vertical section of the cord.) (a) When the vibrator is set to a frequency of 166 Hz, a standing wave with six loops is formed. What must be the linear mass density of the cord? kg/m...

  • An object with the mass m= 2.0 kg hangs from a cord around a light pulley....

    An object with the mass m= 2.0 kg hangs from a cord around a light pulley. The length of the cord between point P and the pulley is L= 2.0 m (Ignore the mass of the vertical section of the cord) a) When the vibrator is set to a frequency of 160 Hz, a standing wave with six loops is formed. What must be the linear mass density of the cord in kg/m? b) How many loops (if any) will...

  • In the arrangement shown in the figure below, an object of mass m4.0 kg hangs from...

    In the arrangement shown in the figure below, an object of mass m4.0 kg hangs from a cord around a light pulley. The length of the cord between point P and the pulley is L 2.0 m. (Ignore the mass of the vertical section of the cord.) Vibrator (a) When the vibrator is set to a frequency of 180 Hz, a standing wave with six loops is formed. what must be the linear mass density of the cond?" kg/m (b)...

  • A light string is wrapped around a solid cylinder, and a block of mass m=100g hangs...

    A light string is wrapped around a solid cylinder, and a block of mass m=100g hangs from the free end of the string, as shown Figure A2.17. When released, the block falls a distance of 1.00m in 2.00s. Draw free-body (or force) diagrams for the block and the cylinder. Calculate the tension in the string. Determine the mass (M) of the cylinder. A light string is wrapped around a solid cylinder, and a block of mass m 100 g hangs...

  • parts c and d please steps would be helpful in the arrangement shown below, an object...

    parts c and d please steps would be helpful in the arrangement shown below, an object can be hung from a sting with linear mass density μ 0.00200 kg m that passes over a light pulley. The string is connected to a vibrator of constant frequency and the length of the string between polnt P and the pulley Iis L 1.90 m. When the mass m of the object is elther 25.0 ka or 36.0 kg, standing waves are observed;...

  • In the arrangement shown in the figure below, an object of mass m = 2.0 kg...

    In the arrangement shown in the figure below, an object of mass m = 2.0 kg hangs from a cord around a light pulley. The length of the cord between point P and the pulley is L = 2.0 m. (Ignore the mass of the vertical section of the cord.) (a) When the vibrator is set to a frequency of 140 Hz, a standing wave with six loops is formed. What must be the linear mass density of the cord?...

  • A mass m hangs from a string. The string is attached to a frictionless pulley of...

    A mass m hangs from a string. The string is attached to a frictionless pulley of mass M and is wrapped around it many times around it. The hanging mass is released from rest from a height h above the floor. The pulley is a uniform disk. use the rotational and linear second laws to find the acceleration of the mass as it falls. I got a = 2mg/(2m+M). Is this correct? If, so please explain

  • Name: - Harmonics Worksheet Wave on a String One end of a string with a linear...

    Name: - Harmonics Worksheet Wave on a String One end of a string with a linear mass density of 1.45 . 10-2 kg/m is tied to a mechanical vibrator that can oscillate up and down. The other end hangs over a pulley 80 cm away. The mass hanging from the free end is 3 kg. The left end is oscillated up and down, which will create a standing wave pattern at certain frequencies. Draw the first five standing wave patterns...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT